
Copyright

by

Jiaxun Cui

2025

1

The Dissertation Committee for Jiaxun Cui
certifies that this is the approved version of the following dissertation:

Communication and Generalization

in Multi-Agent Learning

Committee:

Peter Stone, Supervisor

Yuke Zhu

Amy Zhang

Sandeep Chinchali

Yuandong Tian

2

Communication and Generalization

in Multi-Agent Learning

by

Jiaxun Cui

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2025

3

Acknowledgments

This dissertation would not have been possible without the support and contributions

of many people. First and foremost, I would like to express my deepest gratitude to

my advisor, Professor Peter Stone, for his unwavering support, constructive feedback,

and encouragement throughout my Ph.D. journey. His vision, patience, and support

have been instrumental in shaping both the depth of my research and my growth as

a well-rounded researcher.

I am sincerely grateful to my dissertation committee: Prof. Amy Zhang,

Prof. Yuke Zhu, Prof. Sandeep Chinchali, and Dr. Yuandong Tian, for their time,

thoughtful feedback, and support in evaluating and refining my work. I especially

thank Prof. Yuke Zhu and Dr. Yuandong Tian for their invaluable mentorship and

technical guidance on research projects that contributed to this dissertation, as well

as for the inspiration they provided during my graduate studies.

I have been fortunate to receive research guidance and mentorship through my

internships, which have broadened my perspectives. I want to thank Haobo Fu and

Jiechao Xiong at Tencent AI Labs for introducing me to game-theoretic reinforcement

learning through the Mahjong game. I am grateful to mentors Xiaomeng Yang and

Yuandong Tian at FAIR, whose guidance strengthened my multi-agent RL research

by grounding it in a real-world problem. I would also like to thank my mentor at

Facebook, Geng Ji, for providing the opportunity to develop a large-scale real-world

application of RL. Finally, I am deeply appreciative of Jarrett Holtz and Alessandro

Allievi at Bosch for their guidance and patience on the talking vehicles research.

4

My heartfelt thanks go to my collaborators, fellow Ph.D. students, labmates,

and postdoctoral researchers at the Learning Agents Research Group (LARG), as well

as to my co-organizers of the Reinforcement Learning Reading Group (RLRG). Their

insightful discussions, camaraderie, and encouragement made challenging moments

more manageable and successes more rewarding. I am especially grateful to Sid-

dhant Agarwal, Dian Chen, Caleb Chuck, Cevahir Koprulu, Ishan Durugkar, Rolando

Fernandez, Jiaheng Hu, Yuqian Jiang, Haresh Kanan, Brad Knox, Benjamin Lee,

Geunbae Lee, Hsien-Hsin S. Lee, Alexander Levine, Bo Liu, Shuijing Liu, Mulong

Luo, William Macke, Reuth Mirsky, Michael Munje, Carl Qi, Muhammad Arrasy

Rahman, Max Rudolph, Harshit Sikchi, Chang Shi, Steven Shi, Shahaf Shperberg,

Edward Suh, Yoonchang Sung, Chen Tang, Daniel Urieli, Zizhao Wang, Caroline

Wang, Zhihan Wang, Garrett Warnell, Harel Yedidsion, Wenjie Xiong, Haoran Xu,

Zifan Xu, Lingyun Xiao, Yulin Zhang, Yifeng Zhu, and many others. Moreover, I

deeply appreciate the undergraduate and master’s students I have had the privilege

of mentoring, whose curiosity, enthusiasm, and energy have been a constant source of

inspiration. Organizing the RLRG for three years has been one of the highlights of

my time in the lab, and I am grateful to Prof. Peter Stone and Prof. Amy Zhang for

their generous sponsorship. I also extend my sincere thanks to Megan Booth, Melanie

Gulick, Thomas Atchity, and other university staff for their outstanding assistance

with academic advising and administrative support.

Finally, I am deeply indebted to my family and friends for their unconditional

love, patience, and encouragement. Their belief in me has been my anchor throughout

this journey. I thank my parents, Zhendong Cui and Rong Lu, and my grandmother,

Xingmei Zou, for providing a strong foundation at home that enabled me to pursue

my dreams. I deeply thank my friends in Austin, as well as many other friends beyond

Austin, whose encouragement and companionship have sustained me along the way.

Jiaxun Cui

August 2025

5

Abstract

Communication and Generalization

in Multi-Agent Learning

Jiaxun Cui, PhD
The University of Texas at Austin, 2025

SUPERVISOR: Peter Stone

Multi-agent learning aims to allow artificial intelligence (AI) agents to learn
from interactions with other agents in an environment. However, as AI increasingly
integrates into real-world systems, significant challenges arise in how to robustly in-
teract with and communicate with a variety of other agents, particularly in complex
environments such as autonomous driving, where humans and AI agents coexist. This
dissertation research investigates how agents can be trained to effectively com-
municate with and generalize to diverse partners (including humans) in
simulated real-world scenarios.

Towards addressing this challenge, this dissertation explores three key dimen-
sions: (1) learning communication-supporting representations that facilitate coor-
dination, (2) developing multi-agent policies that generalize to new teammates or
opponents, and (3) learning to collaborate with human-like agents or to use human
language. This dissertation makes novel contributions along each dimension.

First, the dissertation presents Coopernaut, a framework that learns com-
pact, transmittable representations from local observations to support communica-
tion among autonomous vehicles under bandwidth constraints. It also introduces
LLM+Debrief, which enables embodied agents to coordinate in driving scenar-
ios by generating and interpreting natural language messages, paving the way for
human-compatible agent communication.

Second, it introduces MACTA, a reinforcement learning and game-theoretic
training framework that produces robust policies capable of generalizing to unseen and

6

adaptive opponents. In addition, L-BRDiv is introduced as a teammate generation
strategy that promotes behavioral diversity during training, improving generalization
and performance in ad hoc teamwork settings.

Third, the dissertation investigates mixed-autonomy traffic coordination
through decentralized training in environments with both human-proxy and AI agents.
Empirical results demonstrate that even a small number of trained autonomous ve-
hicles can collaborate effectively to influence human behavior and improve overall
traffic efficiency without requiring centralized control.

Collectively, these contributions advance multi-agent AI by unifying commu-
nication, generalization, and human-AI collaboration. Evaluated in both toy domains
and realistic simulated environments, primarily focusing on autonomous driving and
hardware security, the work demonstrates how agents can adapt to novel partners
and communicate effectively in human-interpretable ways.

7

Table of Contents

List of Tables . 6
List of Figures . 8

Part I Background 12
Chapter 1: Introduction . 13

1.1 Contributions . 17
1.2 Reading Guide to the Dissertation . 19

Chapter 2: Background and Notation . 20
2.1 Markov Decision Process . 21
2.2 Partially Observable Stochastic Games 22
2.3 Agent Populations . 24
2.4 Learning Objectives . 25

Part II Learning to Communicate 27
Chapter 3: Learning to Communicate in Latent Representations 28

3.1 Coopernaut . 30
3.1.1 Background: Point Transformers 30
3.1.2 Coopernaut . 32
3.1.3 Policy Learning: Imitation Learning 34
3.1.4 Implementation Details . 35

3.2 Environment: AutoCastSim . 36
3.2.1 Scenarios . 36
3.2.2 V2V Communication . 37
3.2.3 Oracle Expert . 38

3.3 Experiments . 39

1

3.3.1 Experimental Settings . 39
3.3.2 Baselines . 40
3.3.3 Quantitative Results . 41

3.4 Related Work . 44
3.5 Summary, Limitations, and Future Work 47

Chapter 4: Learning to Communicate in Natural Language 49
4.1 Problem Definition . 51
4.2 Method: LLM+Debrief . 52

4.2.1 Agent Policy . 53
4.2.2 Agent Learning: Post-Episode Debriefing 54

4.3 Environment: TalkingVehiclesGym 56
4.4 Experiments . 59

4.4.1 Quantitative Results . 61
4.4.2 Qualitative Analysis . 64
4.4.3 Cross-Scenario Generalization and Distillation towards Real-Time 65

4.5 Related Work . 67
4.6 Summary, Limitations, and Future Work 69

Part III Learning to Generalize 71
Chapter 5: Generalizing to Adversarial Opponents 72

5.1 Problem Statement: Cache Timing Attacks 73
5.1.1 Domain Description . 74
5.1.2 Problem Statement . 75

5.2 Environment: MA-AutoCAT . 75
5.3 Method: MACTA . 78
5.4 Experiments . 81

5.4.1 Evaluation Setup and Metrics 81
5.4.2 Benign Dataset . 82
5.4.3 Results . 82
5.4.4 Ablation Study on Neural Architecture 86

5.5 Related Work . 86
5.6 Summary, Limitations, and Future Work 89

2

Chapter 6: Generalizing to Cooperative Teammates 91
6.1 The Ad Hoc Teamwork Problem . 92
6.2 Minimum Coverage Sets . 93
6.3 L-BRDiv: Generating Teammate Policies By Approximating Minimum

Coverage Sets . 96
6.3.1 Jointly Approximating MCS(E) and Generating Training Partners 97
6.3.2 Lagrangian BRDiv (L-BRDiv) 98

6.4 Experiments . 101
6.4.1 Environments . 101
6.4.2 Baseline Methods . 102
6.4.3 Experiment Setup . 103
6.4.4 Ad Hoc Teamwork Experiment Results 104
6.4.5 Behaviour Analysis . 106

6.5 Related Work . 107
6.6 Summary, Limitations, and Future Work 109

Part IV Learning with Human Proxies 111
Chapter 7: Collaborating with Human Proxies 112

7.1 Problem Formulation . 113
7.2 Methodology . 115

7.2.1 Evaluation Metrics . 115
7.2.2 Centralized Multiagent Driving Policy 116
7.2.3 Modular Transfer Learning Approach 119
7.2.4 Distributed Multiagent Driving Policy 120

7.3 Experiment Setup . 123
7.3.1 Traffic Scenario 1 - The Simple Merge 123
7.3.2 Traffic Scenario 2 - The I-696 Merge 124
7.3.3 Human-Proxy Vehicles . 125
7.3.4 Autonomous Vehicles (AV) . 125
7.3.5 Training Details . 126

7.4 Empirical Results . 126
7.4.1 Comparison of Reward Functions 126
7.4.2 Modular Transfer Learning . 127
7.4.3 Distributed Setting . 128

7.5 Related Work . 132
7.6 Summary, Limitations, and Future Work 133

3

Part V Related and Future Work 136
Chapter 8: Related Work . 137

8.1 Multi-Agent Policy Generalization . 138
8.1.1 Empirical Game Theory Analysis 138
8.1.2 Ad Hoc Teamwork . 139

8.2 Multi-Agent Communication . 140
8.2.1 Vehicle-to-Vehicle Communication 140
8.2.2 Learning to Communicate in Natural Language 141

8.3 Multi-Agent Policy Learning with Mixed Autonomy 142
8.4 Application Domains . 143

8.4.1 The Cache Timing Attack Problem 143
8.4.2 LLM Agents for Autonomous Driving 144

Chapter 9: Future Work . 146
9.1 Towards Super-Human Pokémon AI 146
9.2 Open-Ended Training for Ad Hoc Teamwork 147
9.3 General-Sum N-Agent L-BRDiv . 147
9.4 Ad Hoc Teamwork Benchmark . 148
9.5 Natural Language Communication and Collaboration for Embodied

Agents . 149
9.6 Multi-Agent Strategic Reasoning for Large Language Models 149
9.7 Multi-Agent Collaboration Safety . 150

Chapter 10: Conclusion . 152
10.1 Contributions . 152
10.2 Broader Impact . 154

Appendix 155
Appendix A: Additional Details on LLM+Debrief 156

A.1 Method . 156
A.1.1 Implementation Details . 156
A.1.2 Inference Latencies . 158

A.2 Environment . 158
A.3 Example Agent Prompting Flow . 160
A.4 Example Learned Knowledge and Cooperative Strategies 161

A.4.1 Overtake (Perception) . 161
A.4.2 Red Light (Perception) . 162

4

A.4.3 Left Turn (Perception) . 164
A.4.4 Overtake (Negotiation) . 166
A.4.5 Highway Merge (Negotiation) 168
A.4.6 Highway Exit (Negotiation) . 170
A.4.7 Highway Merge (Negotiation) Silent Reflection 172
A.4.8 Overtake (Perception) Communication Protocol by LLM+Debrief,

seed 12, checkpoint-28 . 173
Appendix B: Additional Details on MACTA 176

B.1 Why Study Cache Timing Attacks . 176
B.2 Environment Configurations . 177
B.3 Benign Dataset . 179
B.4 Trajectory Analysis . 181
B.5 Real Hardware Analysis . 182
B.6 Model Architectures . 184
B.7 Algorithm and Training Hyper-parameters 185
B.8 Heuristic Cache Timing Attacks and Detectors 186

B.8.1 Heuristic Attacker Algorithms 186
B.8.2 Detector Algorithms . 187

Appendix C: Additional Details on L-BRDiv 191
C.1 Teammate Policies for AHT Evaluation 192

C.1.1 Repeated Matrix Game . 192
C.1.2 Cooperative Reaching and Weighted Cooperative Reaching . . 192
C.1.3 Level-based Foraging . 194

C.2 Analyzing Baseline Failure in Repeated Matrix Game & Weighted Co-
operative Reaching . 194
C.2.1 Repeated Matrix Game . 194
C.2.2 Weighted Cooperative Reaching 197

C.3 Analyzing the Lagrange Multipliers of L-BRDiv 198
C.4 AHT Experiment Hyperparameters 201

Appendix D: Additional Details on Traffic Congestion Reduction 203

References 206

5

List of Tables

3.1 Measured wireless throughput and packet loss rate using off-the-shelf
wireless radios. 38

3.2 Quantitative results of different models over three repeated runs. SR:
Success Rate, in percentage; SCT: Success weighted by Completion Time, in
percentage; CR: Collision Rate, in percentage; In the Bandwidth column, we
report the communication throughput required without data compression.
The bandwidth is calculated by assuming 10 Hz LiDAR scanning frequency. 42

4.1 Example scenarios. Here we describe the fundamental composition of each
accident-prone scenario, where the background agents can be configured in
terms of density, controlling policies, and communication capabilities. . . . 57

4.2 Cooperative Perception scenarios. mean ± std over 3 trials, each using
30 evaluation episodes. 62

4.3 Negotiation scenarios. mean ± std over 3 trials, each using 30 evaluation
episodes. 62

4.4 Experimental results for Generalization across scenarios. Each policy
is evaluated using three random seeds, with 30 episodes per seed. We report
the mean performance over the 30 episodes, along with one standard error
of the mean across seeds. Debrief (per-scenario) represents policies learned
individually for each scenario and serves as an oracle baseline for comparison
with the generalization performance of Centralized Memory and Distillation. 67

4.5 Decision latency, message size using distilled LLM policy 67

5.1 Evaluation metrics. 82
5.2 Attacker performance. Evaluation of the attacker’s correct rate and num-

ber of attacks in 64-step episodes without detectors. Statistics are reported
on three independent evaluations of 10,000 episodes. 83

5.3 Mean detection rate (%). Head-to-head evaluations with unseen oppo-
nents from different training instances. The higher the better for detectors
when the opponent is an attacker, and the lower the better when the oppo-
nents are benign programs. ‘()’ as Cyclone (SVM) is trained on Prime+Probe. 84

6

5.4 Mean episode length (steps). Head-to-head evaluations with unseen op-
ponents from different training instances. The lower the better for detectors
when the opponent is an attacker, and the higher the better when the op-
ponents are benign programs. Cyclone and CC-Hunter both require a fixed
episode length of 64 steps. 84

7.1 Performance of different reward functions on Simple Merge 126
7.2 Evaluation results of transferring a policy from Simple Merge to I-696 Merge128
7.3 Evaluation results of distributed method using different features 129
7.4 Experiment results of different reward function parameters of the dis-

tributed method on Simple Merge . 130

A.1 Captioning, reasoning, decision latency, message size using gpt-4o-mini
LLM Policy . 159

B.1 Environment hyper-parameters. 177
B.2 Attack evaluation on commercial processors. We report the attack correct

rates of MACTA attack sequences on three commercial Intel processors for
10,000 episodes. MACTA attackers achieve a > 99.9% correct rate in the
simulator, and still > 99% on real hardware. 182

B.3 Training hyper-parameters for MACTA. 186

C.1 Value of LIPO and BRDiv objectives for the Repeated Matrix Game. . . . 196
C.2 Value of LIPO and BRDiv objectives for Weighted Cooperative Reaching. . 198
C.3 Hyper-parameters for L-BRDiv’s experiments. 199
C.4 Network size for L-BRDiv’s experiments. 200
C.5 Hyper-parameters for baseline methods. 201
C.6 Hyper-parameters for AHT Experiments. 202

D.1 Hyper-parameters for training centralized agents from scratch 204
D.2 Hyper-parameters for training distributed agents from scratch 205
D.3 Hyper-parameters for human-proxy controller 205

7

List of Figures

3.1 Coopernaut enables vehicles to communicate critical information beyond
occlusion and sensing range for vision-based driving. The blue dashed arrows
are information-sharing flows. Through cooperative perception, Cooper-
naut makes more informed driving decisions when line-of-sight sensing is
limited. 29

3.2 Coopernaut is an end-to-end vision-based driving model for networked
vehicles. It contains a Point Encoder to extract critical information locally
for sharing, a Representation Aggregator for merging multi-vehicle messages,
and a Control Module to reason about the joint messages. Each message
produced by the encoder has 128 keypoint coordinates and their associated
features. The message is then spatially transformed into the ego frame. The
ego vehicle merges incoming messages and computes aggregated representa-
tions through voxel max-pooling. Finally, the aggregator synthesizes joint
representations from the ego vehicle and all its neighbors before passing
them to the Control Module to produce control decisions. The numbers in
parentheses denote data dimensions. 31

3.3 Benchmarking scenarios in AutoCastSim. The gray car is the ego
vehicle controlled by our model. The orange trucks are large vehicles that
partially block views of the environment. The red car is not networked and
is likely to collide with the ego vehicle. All other vehicles are background
traffic, either with or without sharing capability. The green-blue dots mark
the planned temporal trajectories for any moving vehicle, with green dots
being waypoints closer in the future than the blue dots. If two planned
trajectories intersect at a similar color (time), it indicates that a collision
may happen. For every scenario, an RGB bird’s-eye view (BEV), an ego-
centric LiDAR BEV image, and a multi-vehicle fused LiDAR BEV image
are presented (left to right). We use relatively little background traffic here
for illustration, and will study the effect of traffic density in Section 3.3.3. 37

3.4 Sensitivity analysis on the varying levels of traffic densities in the Left
Turn scenario. 44

3.5 Comparison of trajectories in the Left Turn scenario. The grey car in the
pictures is the controllable ego vehicle. The red car is going straight in the
opposite direction, occluded behind the orange truck. Our model avoids the
collision as it is able to see the red light violating vehicle from cooperative
perception (highlighted in the yellow box). 45

8

4.1 LLM+Debrief agent framework and agent learning pipeline. 53
4.2 Overview of scenarios and agent roles. Green circles: Focal agents,

agents aim at establishing coordination through communication; Red cir-
cles: Potential colliders; Blue circles: Background agents. 56

5.1 (a) Cache timing channel attack is formed when the attacker process and
the victim process use the same locations of a shared cache for their memory
accesses. (b) An example of Prime+Probe CTA in a 4-set direct-mapped
cache. The attacker process can infer which memory address the victim
process accesses by observing the latency. 74

5.2 We propose MA-AutoCAT, a multi-agent environment to jointly explore
and optimize the policies of the attacker and the defender processes in CTA.
In this environment, multiple agents can play different roles and learn from
each other. The end goal is to learn policies that can generalize to deal with
previously unseen opponents (e.g., those designed by human heuristics). . . 76

5.3 Method. Iterated Best Response PPO (IBR-PPO) learns the best response
to the previous opponent only, while MACTA learns the best response to a
uniform mixture of all historical opponents. 78

5.4 Exploitability evaluation. We fix the detector policies (No Detector,
detector of 9th and 18th fictitious play iterations in MACTA (MACTA-9th,
MACTA-18th)) and train an RL attacker against the detectors from scratch.
Left: Average Episodic Attacker Correct Rate. Right: Attacker’s Number
of Attacks per episode. 85

5.5 A study on neural architectures. We use a Transformer with 8-head
attention and one Transformer encoder layer in MACTA experiments. Left
two: Train attacker-only tasks using different neural architectures on two
machines. Right two: Train attackers with different Transformer configu-
rations on two machines. 86

6.1 Leveraging MCS(E) for generating robust AHT agents. Figure 6.1a
visualizes how teammate policies (points in the large triangle) can be grouped
based on their best-response policies. The rectangle then shows an example
MCS(E). From each subset of Π sharing the same best-response policy (col-
ored small triangles), Figure 6.1b visualizes how one policy is sampled from
each subset to create Πtrain for AHT training. As visualized in Figure 6.1c,
using our generated Πtrain for AHT training should encourage agents that
emulate the best-response policy (dashed squares) to any π−i ∈ Π when
dealing with teammates from Πeval (squares whose color represents its best-
response policy). 94

9

6.2 Lagrangian Best Response Diversity (L-BRDiv). The L-BRDiv al-
gorithm trains a collection of policy networks (purple and orange boxes)
and Lagrange multipliers (green cells inside the black rectangle). The pur-
ple boxes represent a policy from {πi}Ki=1 ⊆ Π while the policies visualized
as an orange box is from {π−i}Ki=1 ⊆ Π. Estimated returns between any
possible pairs of policy, (πj , π−k) ∈ ({πi|πi ∈ Π}Ki=1 × {π−i|π−i ∈ Π}Ki=1),
and their associated Lagrange multipliers are used to compute the optimized
term in the Lagrangian dual form (right red box) via a weighted summation
operation (black dotted lines connect weights and multiplied terms). The
policy networks are then trained via MAPPO (Yu et al., 2022) to maximize
this optimized term, while the Lagrange multipliers are trained to minimize
the term via stochastic gradient descent. 96

6.3 Environments for AHT experiments. We provide experiments in a
repeated matrix game whose reward function is displayed in Figure 6.3a.
Figure 6.3b displays an example state of the Cooperative Reaching environ-
ment where the green stars represent corner cells that provide agents rewards
once they simultaneously reach it. If we start from the top-left corner cell
in Figure 6.3b and assign IDs (A-D) to corner cells in a clockwise manner,
Figure 6.3c shows the reward function of the Weighted Cooperative Reach-
ing environment where agents’ rewards depend on which pair of destination
cells the two agents arrive at. Finally, Figure 6.3d shows a sample state of
Level-based Foraging (LBF) where the apples represent the collected objects. 102

6.4 Generalization performance against previously unseen teammate
types. Figure 6.4a, Figure 6.4c, and Figure 6.4d show that L-BRDiv pro-
duced significantly higher episodic returns when dealing with unknown team-
mate policies in all environment except for Cooperative Reaching. Figure 6.4b
also show that L-BRDiv obtained episodic returns close to BRDiv’s when
evaluated in the Cooperative Reaching environment. 104

6.5 MCSest(E) yielded by L-BRDiv. L-BRDiv is capable of estimating all
members of MCS(E) in all environments except LBF. Meanwhile in LBF,
it discovers at least four conventions, which is still more than what LIPO
and BRDiv discovered. The discovery of more MCS(E) results in L-BRDiv
producing more robust AHT agents. 105

7.1 Centralized neural network policy, where local states for vehicles are
concatenated to form a global state. The state is passed through a series of
hidden layers, resulting in an output vector of accelerations of controlled AVs. 117

7.2 Simple Merge network of length 700 m and Inflow rate 2000 veh/hr
with an on-ramp of inflow rate 200 veh/h. Perturbations caused by merging
vehicles lead to stop-go waves congestion (Kreidieh et al., 2018). 117

7.3 Decentralized policy, where each vehicle only has access to local obser-
vations. The local observation is passed through hidden layers, resulting in
the final scalar output of the AV acceleration. This same policy is applied
to every AV in the network, each with its own local observations. 121

7.4 I-696 Network . 125

10

A.1 TalkingVehiclesGym simulation framework. An agent is defined within
the scenario and has a specific sensor registration and action space. A pol-
icy takes observations from an agent, computes actions, and learn from the
experience replay buffer. 159

A.2 Example agent prompting flow. 160

B.1 False positive rates on different datasets. We report the per-dataset mean
false positive rate for three models. CC-Hunter(threshold=0.45)’s false pos-
itive rates are too high to be included here. 181

B.2 The relative positions of all detectors’ performance on the ROC figure.
The recall is shown for the Prime+Probe attacks (Left) and the AutoCAT
attacks (Right). The false positive rate is measured on the proposed test
benign dataset. Here, Cyclone is trained on Prime+Probe attack sequences.
But we did not provide the Prime+Probe attack sequences to MACTA de-
tector explicitly. 182

B.3 Example trajectories of different attackers and benign agents in a 8-set
1-way L1 cache. The number indicates the cache set being accessed. Red
and green boxes show the observation by the attacker. The latency of other
programs (i.e., victim or benign) cannot be observed by the attacker, but
they can be observed by the detectors. The program IDs are randomized
during training, and the attacker can be any of the two programs in the
system. The cache is initialized with random states. 183

B.4 Example learned Cyclone features for various scenarios: (a, b, c, d)
represent typical features when attackers interact with a victim; (e, f, g, h)
depict typical features resulting from interactions between benign programs.
The feature value in the grey areas is 0, and the intensity of the blue color
indicates the frequency of cyclic inference, with darker shades representing
more frequent occurrences. (e) illustrates the interaction between program
631.deepsjeng_s starting at 2 million (M) steps and the same program at
4M+31 steps. (f) demonstrates a trace of 631.deepsjeng_s self-mix from the
test set, (g) shows a trace from the training set, and (h) presents a sample
trace from the validation set. Typical test set features are similar to those
of the train and validation set. 189

C.1 An example failure mode of BRDiv and LIPO. The above figures
provide an example set of policies that will appear to be more optimal than
MCS(E) if we optimize the diversity metric used by LIPO and BRDiv. . . 195

C.2 Another example failure mode of BRDiv and LIPO in Weighted
Cooperative Reaching. By not discovering policies that move towards
corner cells C and D, BRDiv and LIPO can achieve a higher diversity metric
than when discovering MCS(E). 197

C.3 The changing values of L-BRDiv’s Lagrange multipliers. Figure C.3a,
Figure C.3b, Figure C.3c, and Figure C.3d all show how L-BRDiv’s La-
grange multipliers change over time. Since a randomly initialized policy
will not fulfill the constraints upheld by L-BRDiv, the Lagrange multipliers
will initially increase their value to add more pressure to the policies to fulfill
the constraints. Finally, the Lagrange multipliers will decrease to zero once
constraints are fulfilled. 199

11

Part I

Background

12

Chapter 1

Introduction

Future AI is not alone.

Artificial Intelligence (AI) has played and continues to play an important role

in everyday life. While many capabilities have been intensively developed in set-

tings modeled as single-agent problems (e.g., chatting, playing Atari games, gener-

ating artistic pieces), they are relatively underexplored in real-world scenarios where

decision-making AI agents coexist with humans and other agents. For instance, there

is a potential for autonomous vehicles to be able to work together to improve traffic

safety and cooperate with human drivers to reduce traffic congestion.

The learning dynamics in multi-agent decision-making scenarios present a sig-

nificant challenge. When other agents are viewed as part of the environment, the

environment becomes non-stationary during learning, since other agents’ policies

may change over time. Game theory provides analytical tools to solve multi-agent

games through equilibrium policies, but struggles with the computational complexity

of large-scale games, and does not directly address challenges like processing high-

dimensional multi-modal sensory inputs (in various formats, such as videos, sounds,

HD maps, metadata, etc.) for policies. Multi-agent Reinforcement Learning (MARL),

which optimizes expected individual or team return using Reinforcement Learning

(RL), offers more flexibility than classical game-theoretic computation for handling

13

complex inputs and long-horizon decision-making. Notable techniques in MARL,

such as population-based training, empirical game-theoretic analysis, and centralized

training decentralized execution (CTDE), have achieved significant success in games

like Go (Silver et al., 2016), StarCraft (Vinyals et al., 2019), and Diplomacy (Bakhtin

et al., 2022a).

Despite MARL’s ability to formulate strong policies that yield high expected

returns, two specific aspects remain relatively less explored in the context of deep

multi-agent reinforcement learning.

The first aspect is the generalization of a policy to emergent teammates or

opponents that do not appear during the training phase, herein referred to as un-

seen agents. The cooperative counterpart of the problem is referred to as Ad-Hoc

Teamwork (AHT) (Stone et al., 2010) in literature. This concern is especially crucial

since AI may frequently encounter novel partners, such as humans or other AI agents

in scenarios like autonomous driving. These partners might exhibit diverse policy

styles or coordination conventions. Typically, the generalizability of a policy is of-

ten pursued either by computing equilibrium-based policies (e.g., Nash or correlated

equilibria) that are robust to a range of opponent strategies, or by training with a

diverse population of agents.

The second aspect involves communication in multi-agent learning. While

many training frameworks focus on either fully centralized information sharing or fully

decentralized observation, fewer explicitly address partially observable settings with

constrained communication. However, real-world scenarios often permit communica-

tion, albeit with limitations in bandwidth. These restrictions complicate multi-agent

learning, raising critical questions about when and whom to communicate with, what

information to share, and how to respond to received information. Among commu-

nication protocols, natural language is often the most suitable for interacting with

humans, as it is expressive, well-structured, and widely understood across languages

with translation, though safety-critical domains may prefer standardized signals.

14

Where these two dimensions intersect, formulating a universally applicable

policy that accommodates a range of policies, along with communication mechanisms,

holds practical relevance in real-life applications such as autonomous driving. For

instance, a vehicle with brake failure might broadcast a warning to nearby vehicles.

An autonomous vehicle could parse this structured message directly, while a human-

driven car might require a human-interpretable format such as natural language or

standardized visual or auditory alerts.

With this motivation in mind, this dissertation navigates the complexities of

multi-agent learning, addressing the critical question:

How can a decision-making agent learn to efficiently communicate with and create
generalizable policies for novel AI or human teammates or opponents in simulated
real-world scenarios?

This dissertation explores and answers the question along the following three

dimensions:

A. Communication-Supporting Representations. In the realm of decentral-

ized multi-agent systems, communication is a pivotal tool that facilitates the

exchange of information, coordination of actions, negotiations, and the making

of collective decisions among agents. The interchange of messages involves an-

swering questions related to when, with whom, and what to communicate, and

managing the tangible real-world constraints of limited bandwidth. This dis-

sertation focuses on how to construct transmittable messages through a learned

representation space in inter-agent decision-making scenarios.

B. Multi-Agent Policy Generalization. Multi-agent policy generalization per-

tains to interacting with unseen partners or opponents without the need for

additional fine-tuning based on these interactions. Traditionally, this advan-

tage has been derived from game theory by scrutinizing an equilibrium policy

that ensures some conservative game values. However, real-world applications

such as autonomous driving render traditional game analysis infeasible. With

15

the previous success of the empirical game-theoretic framework (Vinyals et al.,

2019; Lanctot et al., 2017), which performs strategic reasoning through inter-

leaved simulation and game-theoretic analysis, such robustness becomes ap-

proachable by ensuring a high degree of policy diversity during the training

phase, thus preparing the agents to handle a broad spectrum of policy styles

and coordination conventions.

C. Collaborating with Human-Like Agents. Multi-agent systems in real-

world settings, such as mixed-autonomy traffic, are inherently dynamic: agents

may enter or leave the environment at any time, and control may be exer-

cised by either humans or autonomous agents. This dissertation investigates

how reinforcement learning agents can collaborate effectively in such open sys-

tems, adapting to diverse partners, including both AI agents and humans, with-

out requiring centralized coordination. In a separate line of inquiry, this work

also examines the use of natural language as a medium for communication in

multi-agent settings. By leveraging large language models as agents capable of

producing and interpreting human language, we enable autonomous agents to

convey intentions and share key observations in a human-interpretable form.

This direction facilitates direct interaction with human users or their surro-

gates, offering a scalable path toward human-AI collaboration without relying

on extensive human demonstration data.

By exploring the first two directions, we develop foundational methods for

decision-making agents to communicate with and adapt to a variety of policies re-

spectively. To facilitate agents’ collaboration with both humans and AI agents, we

then explore the integration of these two directions under the umbrella of natural

languages. All contributions are evaluated in simulated environments that model

real-world applications following the widely adopted practices in the literature. We

primarily consider simulated autonomous driving for cooperative and mixed-motive

scenarios, and we also include a hardware security problem for adversarial scenarios.

16

1.1 Contributions

This dissertation makes the following contributions to the multi-agent learning

literature:

1. This dissertation introduces and evaluates Coopernaut (Chapter 3), an end-

to-end driving framework that generates efficient transmittable representations

of the local point-cloud observation of autonomous agents through imitation

learning of an expert driving policy with access to comprehensive environmen-

tal information. We show that with Coopernaut, autonomous agents can sig-

nificantly reduce collisions without compromising traffic efficiency compared to

disconnected vehicles in accident-prone scenarios. This contribution addresses

what information to communicate (Dimensions A) through a learned repre-

sentation space under the available bandwidth in autonomous driving.

2. This dissertation presents and evaluates LLM+Debrief (Chapter 4), a self-

play learning framework for embodied large language model (LLM) agents to

communicate and collaborate via natural language in autonomous driving sce-

narios. The pipeline trains agents to articulate intentions, share critical obser-

vations, and negotiate driving plans with nearby vehicles. Experimental results

demonstrate that agents can coordinate effectively using human-comprehensible

natural language, a prerequisite for seamless human-AI collaboration. This con-

tribution addresses Dimensions A and C by enabling natural language com-

munication between agents for joint decision-making in dynamic environments.

3. This dissertation introduces and evaluates a reinforcement and game-theoretic

training framework, MACTA (Chapter 5), which uses Proximal Policy Op-

timization (Schulman et al., 2017) as the best response oracle and fictitious

play (Brown, 1951) as the empirical game-theoretic tool. We show that the re-

sultant policy is able to generalize to unseen opponents and is robust against a

dedicated adaptive opponent in a simulated cache timing attack scenario. This

contribution partially addresses the generalization dimension (Dimension B).

17

4. This dissertation addresses the generalization challenge in cooperative multi-

agent settings (Dimension B) by proposing that an agent can emulate a cov-

erage set of the teammate policy space through exposure to a diverse set of

training partners (Chapter 6). To this end, we introduce L-BRDiv, a teammate

generation method that approximates a diverse subset of policies requiringthat

elicit distinct best responses. We show that L-BRDiv produces qualitatively

diverse teammates and enables ad hoc agents to achieve state-of-the-art perfor-

mance on standard ad hoc teamwork benchmarks at the time of publication.

5. This dissertation conducts an empirical study (Chapter 7) of applying decen-

tralized multi-agent reinforcement learning to work with both humans and AI

agents to improve traffic efficiency in autonomous driving. We delve into the

decentralized training of Reinforcement Learning (RL) agents in a mixed envi-

ronment where human and AI agents coexist. Experimental findings indicate

that a small presence of RL autonomous vehicles can effectively collaborate to

influence human drivers and amplify overall traffic efficiency within an open en-

vironment. This contribution explores the agents’ intelligent interactions with

both humans and other AI agents (Dimension C) without communication.

Collectively, these contributions address the central research question along

the three proposed dimensions. Contributions 1 and 2 examine communication-

supporting representations, encompassing both compact latent messages and nat-

ural language. Contributions 3 and 4 focus on generalization to diverse or adaptive

partners through reinforcement learning and teammate policy diversification. Contri-

butions 2 and 5 investigate collaboration with human-like or human agents, through

explicit communication or decentralized coordination. Although each contribution

primarily targets a specific dimension, together they offer complementary insights

into designing multi-agent systems that can communicate, generalize, and collabo-

rate effectively in open, realistic environments.

18

1.2 Reading Guide to the Dissertation

This dissertation is organized into five parts:

Part I: Background (Chapters 1–2) Introduces the motivation, challenges,

and foundational concepts in multi-agent learning, reinforcement learning, and com-

munication.

Part II: Learning to Communicate (Chapters 3–4) Explores how agents

can generate latent and natural language messages to support cooperation. Chapter 3

introduces Coopernaut for latent communication; Chapter 4 presents LLM+Debrief

for natural language collaboration among embodied agents.

Part III: Learning to Generalize (Chapters 5–6) Investigates policy

generalization in both adversarial and cooperative multi-agent settings. Chapter 5

focuses on robustness against adaptive attackers; Chapter 6 focuses on ad hoc team-

work with novel teammates.

Part IV: Learning with Human Proxies (Chapter 7) Studies autonomous

agent-human collaboration using decentralized reinforcement learning and open traffic

scenarios.

Part V: Related and Future Work and Conclusions (Chapters 8–10)

Reviews related literature and discusses promising directions for extending the work,

including embodied learning, open-ended teamwork, and real-world deployment, fol-

lowed by concluding remarks.

Readers are encouraged to begin with Part I, which provides the motivation

and necessary background for the dissertation. Parts II, III, and IV are organized

thematically and are largely self-contained, each focusing on a distinct research di-

mension. For an overview of how this dissertation fits within the broader literature

and how it may inspire future work, readers may refer to Part V.

19

Chapter 2

Background and Notation

This chapter formalizes the decision-making frameworks and learning objectives that

guide the methods developed in this dissertation. Section 2.1 introduces the Markov

Decision Process (MDP) formulation for single-agent reinforcement learning, includ-

ing definitions of the Markov property, policies, value functions, and regret.

Section 2.2 extends this problem formulation to the multi-agent setting by

presenting Partially Observable Stochastic Games (POSGs), which model strategic

interactions among multiple agents under partial observability. It also introduces

several relevant variants, including two-player zero-sum POSGs and communication-

enabled policy classes that allow agents to exchange messages during decision-making.

Section 2.3 defines concepts in agent populations, distinguishing between the

focal population, whose policies are optimized, and the background population, which

models other agents in the environment. These distinctions support clear specification

of learning objectives in heterogeneous multi-agent systems.

Finally, Section 2.4 introduces key learning objectives used throughout this

dissertation, including Nash equilibrium, targeted optimality, generalizability to un-

seen partners, and exploitability by adaptive opponents. These criteria serve to evalu-

ate the quality and robustness of the policies learned in different experimental settings.

20

2.1 Markov Decision Process

Reinforcement learning is learning what to do in different situations to max-

imize a reward signal through trial and error (Sutton and Barto, 2018). It uses the

formal framework of a Markov Decision Process (MDP) to describe the interactions

of a single agent with the environment. The key property of MDPs is the Markov

property, which implies that an agent has all the information to make a decision based

on the current state.

Definition 2.1.1 (Markov Decision Processes). An MDP can be described using

a tuple ⟨S,A,P ,R, γ⟩, where:

• S is the state space of the environment,

• A is the action space of the agent,

• P : S × A × S → [0, 1] is the state transition function or the environment

dynamics,

• R: S ×A → R the reward function, and

• γ ∈ (0, 1] is the discount factor that defines how much immediate rewards are

valued compared to future rewards.

Definition 2.1.2 (Markov Property). The Markov property implies that the state

transitions depend only on the current state and action:

P (st+1 | st, at) = P (st+1 | s0, a0, s1, a1, . . . , st, at). (2.1)

where t is the discrete time step in the interaction sequence between the agent and

the environment

Definition 2.1.3 (Policy). A policy π is a mapping from a state at time step t,

st ∈ S, to a probability distribution over actions a in the action space A:

π(a|st) = P (a|st) (2.2)

21

where P represent probability mass when A is discrete and is a probability density

when A is continuous.

Definition 2.1.4 (Optimal Policy). An optimal policy π∗ maximizes the expected

return of an episode:

π∗ = argmax
π

Eπ

[∞∑
t=0

γtR(st, at)
]

(2.3)

Definition 2.1.5 (State Value Function (V)). The state value function under a

policy π is defined as the expected cumulative future rewards starting from state s

following the policy:

V π(s) = Eπ

[∞∑
t

γtR(st, at)
∣∣ st = s

]
. (2.4)

Definition 2.1.6 (State-Action Value Function (Q)). The state-action value

function under a policy π is defined as the expected cumulative future rewards ob-

tained by taking action a in state s and then following the policy π:

Qπ(s, a) = Eπ

[∞∑
t

γtR(st, at)
∣∣ st = s, at = a

]
. (2.5)

Definition 2.1.7 (Regret). Regret measures the performance loss due to not follow-

ing the optimal policy from the beginning. Given a time horizon T , the cumulative

regret is defined as:

Reg(T) =
T∑
t=0

(V ∗(st, a
∗
t)− V (st, at)) (2.6)

where V ∗(s) is the optimal state value function and Rt is the reward obtained at time

t, a∗t = argmaxaQ
∗(st, a) is the optimal action, and at is the action chosen by the

agent at time t.

2.2 Partially Observable Stochastic Games

A Stochastic Game (SG) is a multi-agent extension of an MDP where multiple

agents interact in a shared environment with individual rewards. Partially Observ-

22

able Stochastic Games (POSGs) extend SGs by introducing partial observability,

meaning that agents do not have direct access to the full state but instead receive

observations based on an observation function. If all the agent share the same re-

wards, then the POSG becomes Decentralized Partially Observable Markov Decision

Process (Dec-POMDP).

Definition 2.2.1 (Partially Observable Stochastic Games). A POSG can be

described using a tuple ⟨I,S, {Ai}i∈I ,P , {Ri}i∈I , {Oi}i∈I , γ⟩, where:

• I is the set of all N agents,

• S is the joint state space of the environment,

• Ai is the action space of agent i, and A = A1×A2× ...×AN is the joint action

space of all agents,

• P : S × A × S → [0, 1] is the state transition functions or the environment

dynamics,

• Ri: S ×A → R is the reward function for agent i,

• Oi : S×A×Oi → [0, 1] is the observation function for agent i, where Oi(oi|s, a)

is the probability that agent i observes oi ∈ O given state s and joint action a.

• γ ∈ (0, 1] is the discount factor that defines how much immediate rewards are

valued compared to future rewards.

Note that when the observation functions reveal the full state, a POSG reduces to

SG.

Definition 2.2.2 (Two-Player Zero-Sum POSG). A two-player zero-sum POSG

is a special case of a Partially Observable Stochastic Game where:

• I = {1, 2} denotes the set of two agents,

23

• the reward functions satisfy the zero-sum condition:

R1(s, a) = −R2(s, a), ∀s ∈ S, a ∈ A.

This reward condition implies that agent 1’s gain is exactly agent 2’s loss, and vice

versa. The goal of each agent is to maximize its own expected return. Let π = (π1, π2)

denote the joint policy of both agents. The expected return for agent i is:

V i(π1, π2) = E

[
∞∑
t=0

γtRi(st, at)

]
,

and it holds that:

V 1(π1, π2) = −V 2(π1, π2).

Definition 2.2.3 (Communication-Enabled Policy Class). A policy class Πcomm

includes agents that, in addition to selecting actions based on their observations, can

generate and interpret messages. Each agent’s policy πi ∈ Πcomm consists of two

components:

πi(oi) = (ai,mi) (2.7)

where oi is the agent’s observation, ai is the selected action, and mi is a message

communicated to other agents. These messages can be used by others to improve

coordination and performance.

2.3 Agent Populations

In this dissertation, we divide agents into groups to build the evaluation metrics

and learning objectives.

Definition 2.3.1 (Background Population). The background population B, ex-

cluded from the focal group, is a set of agents whose policies are not controlled by

the learning algorithms and are treated as a part of environment dynamics.

24

Definition 2.3.2 (Focal Population). The focal population F is a set of agents

whose policies are controlled by the policies of interest to evaluate. In fully cooperative

or mixed-motive games, a focal group should act like a team to maximize its social

welfare — the cumulative return of the group given the background policies:

max
{πi}i∈F

E
[∑

i∈F

t=∞∑
t=0

Ri(st, at)
∣∣∣{πj}j∈B] (2.8)

where st is the state at time t, and at = (at1, a
t
2, ..., a

t
N) is the joint action of all agents

at time t.

2.4 Learning Objectives

In this dissertation, learning objectives guide both the evaluation and opti-

mization of policies under different settings. We focus on objectives relevant to policy

optimality, robustness, and generalization in multi-agent environments, particularly

under conditions of partial observability and population diversity.

Definition 2.4.1 (Nash Equilibrium). A Nash Equilibrium is a point in the space

of joint policies (πi
∗, π

−i
∗) where, for any player’s policy πi

∗, we have

V i(πi
∗, π

−i
∗) ≥ V i(πi, π−i

∗), ∀i ∈ I. (2.9)

Namely, given all other agents’ equilibrium policies π−i
∗ , there is no motivation for

agent i to unilaterally deviate from its current policy πi
∗ to achieve higher returns.

Definition 2.4.2 (Targeted Optimality). When interacting with a set of oppo-

nents or teammates, a policy or joint policy achieves targeted optimality if it yields

the best possible reward (i.e., no other policy can do better) with high probability.

Formally, a policy πi achieves ε-approximate targeted optimality against a fixed set

of background policies if:

V i(πi, π−i) ≥ V i(πi
∗, π

−i)− ε, ∀i ∈ I (2.10)

with high probability 1− δ.

25

Definition 2.4.3 (Generalizability). A policy or policy group exhibits generaliz-

ability if it maintains strong performance when deployed with new or unseen back-

ground policies. Let µ be a distribution over possible background policies Π−i. The

expected performance of policy πi is measured by the expected return when interact-

ing with unseen policies:

G(πi) = V i(πi, π−i ∼ µ(Π−i)) (2.11)

Definition 2.4.4 (Exploitability). Exploitability quantifies the performance gap

between a given policy and a best-response policy in a strategic environment. It

measures how much an agent (or set of agents) can improve its return by deviating

optimally while other agents’ policies are fixed.

Formally, in an n-player Markov game with joint policy π = (π1, . . . , πn) and

value function V π
i (s) for player i, the one-sided exploitability of player i from state s

is:

Expi(π | s) = max
π′
i

V
(π′

i,π−i)
i (s)− V π

i (s), (2.12)

where π−i denotes the policies of all players except i.

In the special case of a two-player zero-sum game where V π
1 (s) = −V π

2 (s), the

(symmetric) exploitability of the joint policy (π1, π2) is defined as the average of the

two players’ one-sided exploitabilities:

Exp(π1, π2 | s) =
1

2

[
max
π′
1

V
(π′

1,π2)
1 (s)− V (π1,π2)

1 (s) + max
π′
2

V
(π1,π′

2)
2 (s)− V (π1,π2)

2 (s)

]
.

(2.13)

This value is zero if and only if (π1, π2) is a Nash equilibrium.

26

Part II

Learning to Communicate

27

Chapter 3

Learning to Communicate in Latent Rep-
resentations

Autonomous vehicles, as a class of embodied agents, typically rely on optical sensors to

perceive their surroundings and make decisions based solely on their own observations.

Despite recent advances in sensor technology and perception algorithms, these vehicles

remain limited by their line of sight and often struggle to handle extreme or corner-

case scenarios.

Recent advancements in telecommunication technologies have opened new op-

portunities for cooperative perception—a paradigm where vehicles share information

through vehicle-to-vehicle (V2V) communication. This paradigm allows agents to

move beyond single-agent perception and make more informed decisions by leverag-

ing the observations of others (Figure 3.1). While the ideal scenario involves unre-

stricted information sharing among connected vehicles, real-world constraints—such

as limited communication bandwidth—necessitate compact and efficient message rep-

resentations.

This chapter introduces Coopernaut1(Section 3.1), a learning-based, end-

to-end framework that enables vehicles to generate and exchange latent represen-

1Coopernaut is available at https://ut-austin-rpl.github.io/Coopernaut/.

28

https://ut-austin-rpl.github.io/Coopernaut/

(JR�YHKLFOH
5HFHLYLQJ�PHVVDJHV

9HKLFOH�YLRODWLQJ�
WKH�UHG�OLJKW

&ROOLVLRQ�

1HWZRUNHG�YHKLFOHV
6HQGLQJ�PHVVDJHV

Figure 3.1: Coopernaut enables vehicles to communicate critical information beyond oc-
clusion and sensing range for vision-based driving. The blue dashed arrows are information-
sharing flows. Through cooperative perception, Coopernaut makes more informed driving
decisions when line-of-sight sensing is limited.

tations of their local perceptions. Specifically, our model encodes LiDAR data into

compact, point-based latent vectors that can be transmitted between vehicles via real-

istic wireless channels. The receiving agents aggregate these representations to make

informed and coordinated driving decisions. Chapter 4 extends this framework to

incorporate human-compatible communication by enabling the generation of natural

language messages.

To evaluate our approach, we introduce AutoCastSim (Section 3.2), a network-

augmented driving simulation framework developed as part of the research reported

in this chapter. It includes multiple accident-prone scenarios to test the benefits of

cooperative perception. Chapter 4 will present an enhanced version of this environ-

ment, featuring negotiation-based scenarios and multi-agent learning capabilities.

Experimental results (Section 3.3) show that Coopernaut significantly re-

duces collision rates without compromising traffic efficiency, compared to agents with-

29

out communication. This contribution addresses Dimension A of the thesis in

Chapter 1, focusing on what information should be communicated and how it can be

efficiently represented under bandwidth constraints.

This work was published in the Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) 2022. The author developed the

learning framework Coopernaut and conducted experiments; Hang Qiu contributed

to the simulation environment AutoCastSim; Dian Chen, Peter Stone, and Yuke

Zhu provided valuable guidance and feedback throughout the project.

3.1 Coopernaut

Our goal is to learn a closed-loop policy that controls an autonomous ego

vehicle, using LiDAR observations O(ego)
t at time t. Assume that there exists a vari-

able number of Nt neighboring vehicles in the range of V2V communications at time

t, where O(i)
t is the raw 3D point cloud from the onboard LiDAR of the i-th vehi-

cle. The ego vehicle’s driving policy, based on cooperative perception, is defined as

π(at|O(ego)
t , O

(1)
t , . . . , O

(Nt)
t), where the ego vehicle makes control decisions at using its

own observation O(ego)
t and the encoded information received from Nt neighboring ve-

hicles. Here π is parameterized by a deep neural network and trained end-to-end. In

principle, we can transmit all cross-vehicle observations to the ego vehicle and process

them as a whole. In practice, we have to take into account the networking bandwidth

limit, which only allows for message sizes that are orders of magnitude smaller. We

thus first process the raw point clouds into compact representations, which can be

transmitted through the V2V channels in real-time.

3.1.1 Background: Point Transformers

Coopernaut’s model backbone is the Point Transformer (Zhao et al., 2021),

a neural network structure that learns compact point-based representations from 3D

point clouds. It reasons about non-local interactions among points and produces

30

Ego point cloud
(N,3)

Peer point cloud
(N,3)

Peer point cloud
(N,3)

Control

merged representations

Spatial Transformation
and Voxel Pooling

representations

ego vehicle
representations

merged messages
from peers

(128,128)

Point Transformer

Linear

Point Transformer
Block

(128,128)

LinearFarthest Point Sampling

kNN, MLP

Local Max Pooling

Occluded
vehicle

Point Encoder

Rep. Aggregator

(256,128) (64,256) (64,256)

(128,128+3)

(128,128+3)

(128,128+3) (128,128+3)

(256,128+3)

Ego vehicle

Vo
xe

l P
oo

lin
g

D
ow

n-
sa

m
pl

in
g

P
oi

nt
 T

ra
ns

fo
rm

er

R
ep

re
se

nt
at

io
n

R
ep

re
se

nt
at

io
n

R
ep

re
se

nt
at

io
n

Down-Sampling
Block

M
LP

P
oi

nt
 T

ra
ns

fo
rm

er

D
ow

n
S

am
pl

in
g

P
oi

nt
 T

ra
ns

fo
rm

er

P
oi

nt
 T

ra
ns

fo
rm

er

D
ow

n
S

am
pl

in
g

(512,256)(512,32)(2048,3)

Point
Encoder

Point
Encoder

Point
Encoder

Rep.
Aggregator

Control
Module

Figure 3.2: Coopernaut is an end-to-end vision-based driving model for networked
vehicles. It contains a Point Encoder to extract critical information locally for sharing,
a Representation Aggregator for merging multi-vehicle messages, and a Control Module to
reason about the joint messages. Each message produced by the encoder has 128 keypoint
coordinates and their associated features. The message is then spatially transformed into the
ego frame. The ego vehicle merges incoming messages and computes aggregated represen-
tations through voxel max-pooling. Finally, the aggregator synthesizes joint representations
from the ego vehicle and all its neighbors before passing them to the Control Module to
produce control decisions. The numbers in parentheses denote data dimensions.

permutation-invariant representations, making itself effective in aggregating multi-

vehicle point clouds. Here we provide a brief review of Point Transformers.

We adopt the same design as Zhao et al. (2021), which uses vector self-attention

to construct the Point Transformer Layer. We also apply subtraction between features

and append a position encoding function δ to both the attention vector γ and the

transformed features α:

yi =
∑

xj∈X (i)

ρ(γ(ϕ(xi)− ψ(xj) + δ))⊙ (α(xj) + δ) (3.1)

Here xi and xj are input features of the point i and j respectively, yi is the

31

output attention feature for point i, and X (i) represents the set of points in the

neighborhood of xi; ϕ, ψ and α are point-wise feature transformations implemented

as multilayer perceptrons (MLPs). γ is also an MLP with two layers and a ReLU

activation; δ is a position encoding function, and ρ is a normalization function softmax.

Given the 3D coordinates pi, pj ∈ R3 for points i and j, the position-encoding function

is formulated as follows:

δ = θ(pi − pj) (3.2)

where θ is an MLP with two linear layers and one ReLU.

A Point Transformer block is shown in Figure 3.2, which integrates the self-

attention layer, linear projections, and a residual connection. The input is a set of 3D

points p with a feature x of each point. This block enables local information exchange

among points, and produces new feature vectors for each point. The down-sampling

block in Figure 3.2 is to reduce the cardinality of the point sets. We perform farthest

point sampling (Eldar et al., 1997) to the input set to obtain a well-spread subset, and

then use kNN graph and (local) max pooling in the neighborhood to further condense

the information to smaller sets of points. The output is a subset of the original input

points with new features.

3.1.2 Coopernaut

We use cross-vehicle perception to augment the sensing capabilities of the ego

vehicle, enabling it to make more informed decisions under challenging situations than

it could with onboard perception alone. The key challenges are to transmit sensory

information efficiently through realistic V2V channels, to understand the traffic situa-

tion from the aggregated information, and to determine the reactive driving action in

real-time. Our Coopernaut model, illustrated in Figure 3.2, is composed of a Point

Encoder for each neighboring V2V vehicle to encode its sensory data into compact

messages, a Representation Aggregator to integrate the messages from neighboring

cars with the ego perception, and a Control Module which translates the integrated

32

representations to driving commands.

Point Encoder. To reduce communication burdens, every V2V vehicle processes

its own LiDAR data locally and encodes the raw 3D point clouds into keypoints,

each associated with a compact representation learned by the Point Transformer

blocks. We construct the encoder with three Point Transformer blocks accompanied

by two down-sampling blocks, both with a downsampling rate of (1, 4, 4). The final

cardinality of intermediate representations is P/16, where P is the number of points

in the raw point cloud. In our experiments, we preprocess 65,536 raw LiDAR points

to 2,048 points via voxel pooling, i.e., representing the points in a voxel grid using

their voxel centroid.

The message Mj produced by the j-th vehicle comprises a set of position-based

representations Mj and is mathematically described as Mj = {(pjk, Rpjk)}
K , where

pjk ∈ R3 for k = 1, . . . , K is the position of a keypoint in 3D space and Rpjk is its

corresponding feature vector produced by the Point Encoder. We limit the size of Mj

to be at most K tuples. These keypoints carrying features are in each vehicle’s local

frame. They preserve the spatial information as their coordinates are sampled from

raw point clouds.

Representation Aggregator. Messages transmitted from other vehicles need to be

fused and interpreted by the ego vehicle. The Representation Aggregator (RA) for

cooperative perception is implemented as a voxel max-pooling operation and a point

transformer block. RA first spatially transforms the keypoints in other vehicles’ coor-

dinates to the ego vehicle’s frame using their relative poses. This operation assumes

accurate vehicle localization (e.g., using HD maps). It then aggregates the incoming

messages that are spatially close via max-pooling all the points located inside the

same voxel grid cell. Finally, it fuses the multi-view perception information with an-

other Point Transformer block. The two operations above preserve the permutation

invariance with respect to the ordering of other vehicles and can handle a variable

number of sharing vehicles. For bandwidth control, Coopernaut receives messages

33

from three randomly chosen V2V vehicles in the vicinity.

Control Module. The control module is a fully-connected neural network designed

to make control decisions based on the received messages. These control decisions

include the throttle, brake, and steering, denoted as scalar T,B, S respectively. These

values output from the model are first clipped to their valid ranges (e.g., [0,1] for

throttle). To enforce compliance with speed limit regulations, we apply a PID-based

speed controller that post-processes the model’s outputs to prevent violations due to

excessive acceleration.

3.1.3 Policy Learning: Imitation Learning

We train our model to imitate the expert policy with privileged information

using DAgger (Ross et al., 2011b). To warm-start policy learning, we first train the

model using behavior cloning.

Behavior Cloning. Behavior Cloning is designed to minimize the distribution gap

between the training policy and the expert policy. The goal is to find an optimal policy

π̂ such that the loss w.r.t. the expert’s policy πexpert, under its induced distribution

of states S is minimized, i.e.,

π̂ = argminπ∈ΠEs∼S[ℓcontrol(π(s), πexpert(s))]. (3.3)

The objective function ℓcontrol is a linear combination of ℓ1-loss of throttle, brake, and

steering between the policy’s actions and the expert’s actions:

ℓcontrol = η1ℓthrottle + η2ℓbrake + η3ℓsteer (3.4)

where η1, η2, η3 are the coefficients of the loss for each action. All three coefficients

are set to 1 in our experiments.

DAgger. Limitations of behavior cloning for autonomous driving have been discussed

in Codevilla et al. (2019). DAgger (Ross et al., 2011b) address the covariance shift

issues via online training. The core idea is to let the student policy interact with the

34

environment under the supervision of the expert and record the expert’s actions on

the same states visited by the student. The training dataset is iteratively aggregated,

using a mixture of the student’s and expert’s actions. The sampling policy πi for the

i-th iteration follows

πi =

{
πexpert, w.p. βi
πstudent,i, w.p. 1− βi

(3.5)

where βi = β0 × βi−1 are exponentially decreasing from the initial β0, representing

the probability that the expert’s action is executed at the i-th iteration.

3.1.4 Implementation Details

When more than three neighboring vehicles send messages, we randomly select

messages from three of the vehicles. All the neighbors encode their processed point

clouds locally by the 3-block Point Encoder and send the messages of size 128×(128, 3)

and warp the coordinates to the ego frame. We aggregate the merged representations

by another block of Point Transformer. After global max pooling, the features are

concatenated with the ego speed feature before passing to the fully connected layer.

Our model has a 90ms latency on an NVIDIA GTX3090 GPU, where the point

encoder takes 80ms. Our model training consists of two stages: behavior cloning and

DAgger. We first train every scenario-specific model by behavior cloning, then the

final policy of behavior cloning serves as an initial student policy for DAgger. We

collect 4 new trajectories and append them to the Dagger dataset every 5 epochs using

a sampling policy (see Section 3.1.3) with β0 = 0.8 during the DAgger stage. For all

data used for training, 25% of them are collected under accident-prone scenarios

(with an occluded collider vehicle inserted) and 75% of them are normal driving

trajectories.

35

3.2 Environment: AutoCastSim

We present AutoCastSim, a simulation framework which offers network-

augmented autonomous driving simulation on top of CARLA (Dosovitskiy et al.,

2017). This simulation framework allows custom designs of various traffic scenarios

for training and evaluating cooperative driving models. The simulated vehicles can be

configured with realistic wireless communications. It also provides a path-planning-

based oracle expert with access to privileged environment information.

3.2.1 Scenarios

We designed three challenging traffic scenarios, shown in Figure 3.3, in Au-

toCastSim as our evaluation benchmark. These scenarios are selected from the pre-

crash typology of the US National Highway Traffic Safety Administration (NHTSA) (Najm

et al., 2013), where limited line-of-sight sensing affects driving decisions:

* Overtaking. A truck blocks the way of a sedan in a two-way single lane road with

a dashed yellow lane divider. The truck also impedes the sedan’s view of the opposite

lane. The ego car has to overtake with a lane change maneuver.

* Left Turn. The ego car tries to turn left on a left-turn yield light but encounters

another truck in the opposite left-turn lane, blocking its view of the opposite lanes

and potential straight-driving vehicles.

* Red Light Violation. The ego car is crossing the intersection when another

vehicle is rushing the red light. LiDAR fails to sense the other vehicle because of the

lined-up vehicles waiting for the left turn.

36

N
ot

 S
ha

rin
g

S
ha

rin
g

B
ird

’s
-e

ye
 V

ie
w

Overtaking Left Turn Red Light Violation

0s 10s

Figure 3.3: Benchmarking scenarios in AutoCastSim. The gray car is the ego
vehicle controlled by our model. The orange trucks are large vehicles that partially block
views of the environment. The red car is not networked and is likely to collide with the
ego vehicle. All other vehicles are background traffic, either with or without sharing capa-
bility. The green-blue dots mark the planned temporal trajectories for any moving vehicle,
with green dots being waypoints closer in the future than the blue dots. If two planned
trajectories intersect at a similar color (time), it indicates that a collision may happen.
For every scenario, an RGB bird’s-eye view (BEV), an ego-centric LiDAR BEV image, and
a multi-vehicle fused LiDAR BEV image are presented (left to right). We use relatively
little background traffic here for illustration, and will study the effect of traffic density in
Section 3.3.3.

3.2.2 V2V Communication

To simulate realistic wireless communication, we use real V2V wireless radios

to profile wireless bandwidth capacity and packet loss rate due to channel diver-

sity between mobile agents. Specifically, we use three iSmartways DSRC radios and

37

three C-V2X radios (iSmartWays Technology Inc., 2018), mounted on top of mov-

ing vehicles, to measure the maximum capacity of continuous wireless transmission

in practice. Table 3.1 shows the tested throughput and packet loss. It also shows

the throughput of WiFi (802.11n, ac) for context. Note that the 802.11 series is not

designed for mobile scenarios. Table 3.1 shows that V2V bandwidth is two orders of

magnitude smaller than the indoor wireless capacity. The extremely limited band-

width, in practice, poses significant challenges for designing the representations for

V2V communication. We use the Winner II wireless channel model (Meinilä et al.,

2009) in our simulator and use the measured C-V2X radio capacity and packet loss

rate in the channel model. We refer to prior work (Qiu et al., 2021) for the design and

implementations of the coordination, scheduling, and the network transport layer.

Table 3.1: Measured wireless throughput and packet loss rate using off-the-shelf wire-
less radios.

DSRC C-V2X 802.11n 802.11ac

Throughput (Mbps) 2.0 7.2 ∼ 200 ∼ 900
Packet Loss (%) < 5 < 5 > 90 > 90
Mobility support Yes Yes No No

3.2.3 Oracle Expert

The expert has access to the privileged information of the traffic scenarios.

The information includes the point cloud from the LiDARs of all neighboring vehicles

and the positions and speeds of these neighboring vehicles and other traffic partic-

ipants. The expert transforms all of the point clouds from neighboring cars to its

ego perspective (which is impractical due to the wireless bandwidth limit mentioned

above). The transformed point cloud is fused for downstream obstacle detection and

planning. The expert policy leverages all information above to analyze and avoid

possible collisions. The path planning algorithm uses an A* trajectory planner (Hart

et al., 1968) with pose and distance heuristics. The expert moves at a target speed

of 20km/h.

38

3.3 Experiments

We first discuss the evaluation method and the experiment setup, and then give

a brief overview of our baselines. Next we present the main quantitative evaluation

results of our methods against baselines. Finally, we provide further analysis and

visualization to understand the quality of our learned model. In this section, we

answer the following research questions:

Q1 Can Coopernaut generate effective latent representations to facilitate safer and

more efficient driving compared to other baselines? (Yes, it outperforms other

methods in both safety and efficiency metrics.)

Q2 Does Coopernaut generalize across different traffic densities? (Coopernaut

achieves the best generalization performance among all the compared methods,

with degradation performance as traffic gets denser.)

3.3.1 Experimental Settings

Scenario Configuration. We generate traces from the three scenarios we imple-

mented in AutoCastSim (Section 3.2.1) for training and evaluation. These scenarios

can be programmatically re-configured with key parameters, notably the number of

vehicles, vehicle spawning locations, and vehicle cruising speeds. Random combina-

tions of these parameters are sampled to procedurally generate traces with traffic

situations of varying complexity — in some cases the ego vehicle has to take emer-

gency actions to avoid potential collisions, while in other cases, cruising along the

default route can reach the destination.

Dataset. Specifically, for each scenario, we use the expert agent (Section 3.2.3) to

generate an initial training set of 12 traces with randomized scenario configurations,

followed by another randomly configured 84 traces for DAgger. In the evaluation, we

systematically test each model on a spectrum of 27 randomly selected accident-prone

environment configurations over three repeated runs, each using different random

39

seeds for background traffic. For fair comparison, we use a fixed set of 27 test config-

urations to evaluate all models.

Metrics. We report three metrics, Success Rate, Collision Rate, and Success weighted

by Completion Time:

Success Rate (SR). A successful completion of the scenario is defined as the ego

agent reaching a designated target location in a permissible time without collision

or prolonged stagnation. The success rate is defined as the percentage of successful

completions among all evaluated traces.

Collision Rate (CR). Collision is the most common failure mode. Collision rate is

defined as the percentage of evaluation traces where the ego vehicle collides with any

entity, such as vehicles, buildings, etc.

Success weighted by Completion Time (SCT). SR reflects overall task success or fail-

ure. It does not differentiate the amount of time a driving agent needs to complete

the traces. We introduce a third metric to weigh the success rate by the completion

time ratio between the expert and the agent:

SCT = I{agent success}Texpert

Tagent
(3.6)

where I is an indicator function, and Texpert and Tagent are the expert’s and the agent’s

completion time, respectively. As the expert agent should require no longer comple-

tion time than the agent, the ratio resides in the range of [0, 1].

3.3.2 Baselines

We compare Coopernaut with non-V2V and V2V driving baselines. For a

fair comparison, we adopt the same neighbor selection process (Section 3.1.4) in all

V2V approaches.

* No V2V Sharing. The non-sharing baseline makes decisions solely based on the

onboard LiDAR data and ego speed. The model shares the same data processing

scheme for an individual vehicle and point encoder architecture as our final model.

40

* Early Fusion. The Early Fusion model assumes an unrealistic communication

bandwidth, with which it can transmit and fuse the entire raw point cloud data from

all neighboring vehicles. While this method is intractable in practice, it serves as

a baseline to examine our point-based architecture’s effectiveness in representation

learning. To fit this model in GPU memory, we limit the size of the fused input

points to 4,096. Like the previous baseline, Early Fusion also uses a 3-block Point

Transformer encoder.

* Voxel GNN. We adapt V2VNet (Wang et al., 2020), which is designed for 3D

detection and motion forecasting, to learn end-to-end driving. Every vehicle processes

its local point cloud onboard and shares a voxel representation with the ego vehicle

for control. It uses a graph neural network (GNN) in the ego frame as the aggregator.

The control actions are predicted from the GNN-fused representations.

For a fair comparison, all baselines and proposed approaches are independently

trained over three repeated runs with the same training parameters (Section 3.1.4).

We report the average performance over the three runs on the same scenario config-

urations (Section 3.3.1).

3.3.3 Quantitative Results

This section presents the empirical evaluations of all the models in the three

benchmarking scenarios.

Scenario Completion. Table 3.2 shows the performance comparisons in each of

the three traffic scenarios. In all three scenarios, the No V2V Sharing model has

performed poorly, with less than 50% success rate for each scenario and high colli-

sion rates. All three cooperative driving models, including Early Fusion, Voxel GNN,

and Coopernaut, have achieved substantially higher SR and SCT scores and lower

collision rates than the No V2V Sharing baseline. It indicates that the V2V commu-

nication provides critical information about the traffic situation over the ego vehicle’s

line-of-sight sensing to make informed driving decisions. The Early Fusion method

41

Table 3.2: Quantitative results of different models over three repeated runs. SR: Suc-
cess Rate, in percentage; SCT: Success weighted by Completion Time, in percentage; CR:
Collision Rate, in percentage; In the Bandwidth column, we report the communication
throughput required without data compression. The bandwidth is calculated by assuming
10 Hz LiDAR scanning frequency.

Metrics
Methods No V2V Sharing Early Fusion Voxel GNN Coopernaut (Ours)

Bandwidth (Mbps) – 60.0 5.60 5.10

Overtaking
SR↑ 45.3±0.6 81.9±7.2 70.0±4.8 90.5±1.2
SCT↑ 43.6±0.7 81.2±5.2 67.8±4.2 88.4±1.1
CR↓ 35.8±3.6 11.9±5.1 16.1±3.6 4.5±3.1

Left Turn
SR↑ 40.3±5.9 72.8±8.6 53.5±6.9 80.7±5.2
SCT↑ 37.8±4.6 68.8±8.9 51.0±6.9 76.2±3.9
CR↓ 55.6±9.6 26.3±8.1 33.3±7.3 18.1±6.2

Red Light Violation
SR↑ 47.3±18.7 78.6±11.8 64.2±25.3 80.7±7.6
SCT↑ 46.1±18.4 75.8±9.1 62.0±24.8 77.8±7.0
CR↓ 51.4±17.4 17.7±15.2 35.0±25.9 17.7±7.8

improves over the non-V2V baseline by over 30% in average success rate. However, the

Early Fusion baseline requires transmitting raw point clouds across vehicles, leading

to an unrealistic bandwidth requirement of 60Mbps (before data compression).

In contrast, pre-processing raw sensory data into representations has dramat-

ically reduced the bandwidth requirements while improving driving performances.

Both Voxel GNN and Coopernaut perform sensory fusion on the representation

level. In comparison to the other cooperative driving models, Coopernaut out-

performs both Early Fusion and Voxel GNN baselines for all three scenarios. We

hypothesize that the point-based representation learning of Coopernaut makes it

robust to localization errors compared with fusing raw points in Early Fusion. Fur-

thermore, the explicit representation of point 3D locations and the point sampling

module of Coopernaut retain a high spatial resolution of its intermediate repre-

sentations in contrast to the voxel-based feature maps used by Voxel GNN.

42

Bandwidth Requirement. As shown in Table 3.2, sharing raw point cloud at

the LiDAR scanning rate of 10fps would require a wireless bandwidth of 60Mbps, far

beyond the achievable bandwidths in the current (DSRC) and future (C-V2X or LTE-

direct) V2V communication technology (expected less than 10Mbps, see Table 3.1).

V2VNet (Wang et al., 2020) claims a bandwidth requirement of 25 Mbps with point

cloud compression, which is also beyond what current V2V radios can support. In

our design, both Voxel GNN and Coopernaut require less than 6Mbps bandwidth,

a 4× reduction of the communication data sizes of V2VNet without compression.

When developing the V2V models, we carefully explored the design space of the

sharable representation size and its bandwidth requirement for both Voxel GNN and

Coopernaut. For example, if Coopernaut were to share a 32×32 representation,

it only needs 0.9 Mbps. However, the coarse information is insufficient for the model

to achieve good performance. We find that a 128×128 point representation meets the

bandwidth requirements (Table 3.1) without substantial performance degradation.

Sensitivity to Traffic Density. We further test Coopernaut under varied traf-

fic densities in the most challenging Left Turn scenario. Figure 3.4 shows that our

method generalizes to variable traffic densities, consistently outperforming the No

V2V Sharing baseline. Qualitatively, we observe that No V2V Sharing drives slower

in denser traffic, reacting better to emergency situations. In contrast, V2V methods

do not improve much in denser traffic, as they tend to be impacted by the increased

stochasticity of incoming messages from changing neighbors. Nonetheless, Cooper-

naut outperforms the baselines in all traffic densities with over 30% higher success

rates than No V2V Sharing.

Qualitative Visualizations. Figure 3.5 shows an example evaluation trajectory

from Left Turn. The left-turning ego vehicle (grey) can proactively avoid collision by

yielding to the opposite-going cars with Coopernaut. A common failure pattern

of the non-sharing model is that it drives ahead to its target location regardless of

any traffic violators or potential colliders due to the limited line-of-sight of its ego

43

0 15 30 45
Traffic Density (# of Background Vehicles)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

12.8

35.4
40.3

49.8

99.6

88.4
80.7 80.3

100.0

84.8

72.8
67.5

52.3 49.4
53.5 56.8

Tr
ai

ni
ng

 D
en

sit
y

Left-Turn Success Rate under Different Traffic Densities

No V2V Sharing
Our Model
Early Fusion
Voxel GNN

Figure 3.4: Sensitivity analysis on the varying levels of traffic densities in the Left Turn
scenario.

perception. The transmitted messages through V2V channels help our model resolve

the ambiguity with cross-vehicle perception, leading to safer driving decisions in this

accident-prone situation.

3.4 Related Work

Coopernaut lies at the intersection of learning-based driving, 3D perception,

and networked multi-agent systems. We summarize related literature across three key

threads: learning driving policies from data, processing 3D perception for informed

decisions, and leveraging inter-vehicle communication for cooperative behavior.

Deep Learning for Driving Policy. Learning a driving controller involves train-

ing closed-loop policies using deep networks, usually via imitation learning and/or

reinforcement learning. Imitation learning for autonomous driving was pioneered

by Pomerleau (1988), and has since then been extended to urban and more complex

scenarios (Codevilla et al., 2018; Bansal et al., 2018; Sauer et al., 2018; Codevilla et al.,

2019; Chen et al., 2020; Prakash et al., 2021). Very recently, reinforcement learning

44

t=6.5s

t=6.5s

t=8.5s

t=8.5s t=10.5s

t=10.5s t=13.5s

C
oo

pe
rn

au
t

(O
ur

s)
N

o
V2

V
Sh

ar
in

g

t=9.5s

t=6.5s

t=6.5s

Figure 3.5: Comparison of trajectories in the Left Turn scenario. The grey car in
the pictures is the controllable ego vehicle. The red car is going straight in the opposite
direction, occluded behind the orange truck. Our model avoids the collision as it is able
to see the red light violating vehicle from cooperative perception (highlighted in the yellow
box).

has also made progress in autonomous driving (Toromanoff et al., 2020; Chen et al.,

2021), showing potential to train better policies in complex situations (Toromanoff

et al., 2020; Chen et al., 2021). However, reinforcement learning is known to be

more data-hungry and requires engineering a high-quality reward function. We fol-

low the imitation learning paradigm but use an expert oracle with complete global

information (Chen et al., 2020) for training efficiency.

3D Perception for Autonomous Driving. 3D perception has become more popu-

lar in autonomous driving due to the decreasing cost of commoditized LiDAR sensors.

Zhou and Tuzel (2018) pioneered using 3D object detection in autonomous driving,

and since then, it has been further developed as better models, and more advanced

techniques have been discovered. Very recently, Prakash et al. (2021) also explored

end-to-end driving using point cloud data. Two families of 3D perception backbones

have been widely adopted: voxel -based methods discretize points to voxels (Zhou and

Tuzel, 2018; Lang et al., 2019; Shi et al., 2020); and point-based methods directly op-

45

erate on coordinates (Qi et al., 2017a;b; Zhao et al., 2021). Coopernaut uses a

transformer-based architecture (Vaswani et al., 2017) with point-based representa-

tions (Zhao et al., 2021; Qi et al., 2017a;b), which preserves high spatial resolutions

with discretization and requires lower bandwidths to transmit without compression

needed by prior work (Wang et al., 2020).

Networked Vehicles and Cooperative Perception. Network connectivity of-

fers a great potential for improving the safety and reliability of self-driving cars.

Vehicles can now share surrounding information via Vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2X) channels using wireless technologies, such as Dedi-

cated Short Range Communication (DSRC) (Kenney, 2011) and cellular-assisted V2X

(C-V2X) (Gallo and Harri, 2013; Qualcomm, 2019). These V2V/V2X communication

devices are increasingly deployed in current and upcoming vehicle models (Thomp-

son, 2016; Plungis, 2018)). The academic community has built city-scale wireless

research platforms (COSMOS (Yu et al., 2019)) and large connected vehicle testbeds

(e.g., MCity (Bezzina et al., 2023), DRIVE C2X (Stahlmann et al., 2011)), to explore

the feasibility of cooperative vehicles and applications. Prior work (Qiu et al., 2018;

Chen et al., 2019) proposed cooperative perception systems that broaden the vehicle’s

visual horizon by sharing raw visual information with other nearby vehicles. Such

systems can be scaled up to dense traffic scenarios leveraging edge servers (Zhang

et al., 2021) or in an ad-hoc fashion (Qiu et al., 2021). Recent work (Wang et al.,

2020; Li et al., 2021b; Xu et al., 2022) proposed multi-agent perception models to

process sensor information and share compact representations within a local traffic

network. In contrast, we focus on cooperative driving of networked vehicles with on-

board visual data and realistic networking conditions, advancing towards real-world

V2V settings.

46

3.5 Summary, Limitations, and Future Work

In summary, this chapter investigates vision-based driving using cooperative

perception for networked vehicles in a newly designed simulation benchmark Auto-

CastSim. We introduce Coopernaut, an end-to-end driving policy that encodes,

aggregates, and analyzes 3D LiDAR data from networked vehicles. The point encoder

and representation aggregator of Coopernaut retain detailed spatial information

and are robust to a varying numbers of communicating vehicles. Our empirical re-

sults show that our method improves the robustness of autonomous driving poli-

cies in risk-sensitive traffic scenarios. This chapter contributes to Dimension A:

Communication-Supporting Representation of the core research problem.

This work has limitations and ample room for future extension.

Dependence on Oracle-Guided Learning. First, our method relies on a hand-

engineered oracle for imitation learning. It leaves open questions to investigate adap-

tive strategies of when to communicate, what to encode in messages, and how to drive

cooperatively, ideally without the need of an algorithmic oracle.

Idealized Communication Assumptions. While our cooperative perception model

conforms to realistic wireless bandwidth, we do not take into account practical net-

working issues, including transmission latency, networking protocols, and repetitive

or lost packets. Nonetheless, Coopernaut is robust to packet loss to a certain extent

(5% as configured in AutoCastSim). Random neighbor selection also adds another

layer to mitigate packet loss from individual transmitters.

Idealized Localization Assumptions. Furthermore, highly accurate vehicle lo-

calization is assumed, which is used by Coopernaut to transform the point-based

representations from neighboring vehicles to the ego vehicle’s reference frame, even

though AutoCastSim simulates slight errors in the pose and height estimation of

47

a vehicle. In reality, without a high definition map (HDMap), localization error

can yield up to meter-level displacement. Using HDMap can significantly improve

location and pose estimation, which is commonly adopted in both industry and

academia (Yang et al., 2018; Li et al., 2021a).

Limitations in Perceiving Small Objects. For fair comparison, we use the same

down-sampling scheme for all point-based baselines and our approach, which proves

to be effective in our scenarios with moving vehicles and large obstacles. For smaller

objects like pedestrians, adaptive sampling schemes based on semantic information are

a promising direction for future work. One could also extend the model architecture

of Coopernaut to better incorporate temporal information for improving driving

performance.

The next chapter will introduce a method that studies how to enable agents

to speak human language to facilitate multi-agent cooperation.

48

Chapter 4

Learning to Communicate in Natural
Language

Chapter 3 introduced a framework for encoding perceived point cloud data into la-

tent representations for inter-agent communication. While effective for coordination

among co-trained autonomous agents, it limits broader participation from those with

different representations or language and leaves human drivers reliant solely on their

local perceptions without being privy to the collaboration efforts. To enable collab-

oration that includes human participants, this chapter explores the use of natural

language communication in multi-agent systems.

Facilitating natural language interaction among embodied agents presents sev-

eral challenges. Agents must be capable of both generating human-interpretable lan-

guage and understanding messages in a grounded, actionable manner to produce ap-

propriate embodied behaviors. Traditionally, each of these capabilities would require

extensive supervised training data. However, datasets featuring natural language-

based inter-agent communication for collaboration are scarce.

Recent advances in large language models (LLMs) offer a promising alterna-

tive. By leveraging the agentic capabilities of LLMs, we enable self-play and re-

flective learning without relying on imitation from human-annotated communication

data. This chapter explores the potential of LLM-based agents to autonomously

49

develop effective communication and cooperation strategies in multi-agent driving

scenarios—using only self-generated interactions.

This chapter introduces LLM+Debrief1 (Section 4.2), a multi-agent learn-

ing method that enables LLM agents to engage in centralized debriefing post-

interaction to reflect on and refine their decentralized communication and collab-

oration strategies. These improved strategies are then distilled into decentralized

execution policies (Section 4.4.3). To support this work, we extend AutoCastSim

(Chapter 3) and develop TalkingVehiclesGym (Section 4.3), a realistic simulation

framework that models vehicle-to-vehicle communication in a suite of accident-prone

driving scenarios that could be resolved by cooperative perception and negotiation.

Our experiments (Section 4.4) show that even when LLM agents initially fail to co-

ordinate effectively, LLM+Debrief allows them to iteratively learn what messages

to send and how to respond to improve task success.

This chapter focuses on the content and structure of natural language commu-

nication for embodied collaboration, with the goal of ultimately enabling human-agent

interaction. It directly addresses Dimension A (Communication-Supporting Repre-

sentations) and Dimension C (Collaborate with Human-Like Agents) as introduced

in Chapter 1.

This work is currently under review. The author developed the learning frame-

work LLM+Debrief, the multi-agent simulator TalkingVehiclesGym, and con-

ducted all experiments. Chen Tang, Jarrett Holtz, Janice Nguyen, Alessandro G.

Allievi, Hang Qiu, Peter Stone provided valuable feedback and guidance throughout

the project.

1LLM+Debrief is available at https://talking-vehicles.github.io/.

50

https://talking-vehicles.github.io/

4.1 Problem Definition

In this chapter, we focus on the subset of agents that are actively participating

in the cooperation. We assume that these cooperative vehicles implicitly aim to help

each other, treating all other (referred to as “background") vehicles as uncontrollable

elements of the environment. Therefore, we frame the problem of Talking Vehicles

as a partially observable stochastic game (POSG, as defined in Chapter 2), focusing

on optimizing the social welfare of a focal population (F) (Agapiou et al., 2022) —

defined as the joint reward of all participating agents — as the primary objective. The

reward functions associated with each agent’s individual tasks may or may not fully

align, necessitating coordination among agents to achieve high joint rewards. Each

agent’s observation space is limited to a partial view of the full state, and agents

make decisions in a decentralized manner based on their own partial observations

and messages received from other agents. In this problem, each agent’s action space

comprises two main components: (1) generating messages and (2) controlling

the vehicle. In this work, the message generation space is defined over natural

language (English).

As a reminder, a POSG is defined by the tuple ⟨I,S, {Oi}, {Ai},P , {Ri}⟩

where I = {1, 2, ..., N} refers to the identities of all agents in a scenario; S is the

state space comprehensively describing the environment; Oi is the observation space

describing agent i’s view of the state; Ai is the action space of agent i; P is the

state transition function S × A1 ×A2 × ... ×AN → S; Ri is the reward function of

agent i. The focal group of agents is denoted by F ⊆ I, representing a subset of

all agents I. The goal for each agent i ∈ F is to optimize a policy πi to maximize

the expected cumulative task returns of all the agents in F , given background agent

policies outside the focal group:

max
{πi}i∈F

E
[∑

i∈F

t=∞∑
t=0

Ri(st, at)
∣∣∣{πj}j /∈F ,j∈I

]
(4.1)

, where st is the state at time t, and at = (at1, a
t
2, ..., a

t
N) is the joint action of all

51

agents at time t.

The agent’s policy is structured to output both control and communication

commands. Specifically, πi(Oi, {Mj}j∈F)→ Ai maps the observation of agent i and

the received messages {Mj}j∈F to its action spaceAi = ⟨Mi, Ci⟩, whereMi represents

the message generation space, which is constrained to natural language, and Ci denotes

the vehicle control space with dimensions for throttle, brake, and steering inputs. At

time step t, the message Mi generated by agent i is broadcast to all the connected

agents within a certain communication radius, at the next time step t+ 1.

This problem presents the following technical challenges: (1) How can agents

understand the situation and generate meaningful messages to collaboratively per-

ceive the environment or negotiate in natural language; (2) How can agents com-

prehend incoming natural language messages and incorporate them into driving

decision-making?

4.2 Method: LLM+Debrief

The core technical challenge of the Talking Vehicles problem is to enable

agents to communicate in natural language in order to facilitate cooperation and

act correspondingly. To establish an initial solution, we adopt an LLM agent

framework (Figure 4.1) that prompts LLMs as a foundational prior for autonomous

agents to engage in human-like communication, structuring the message within nat-

ural language space, allowing agents to interpret messages and make informed driv-

ing decisions. A key challenge of using LLMs lies in the fact that they are not

specifically trained for driving tasks. To overcome this limitation, we introduce

LLM+Debrief (Algorithm 2), a novel multi-agent learning method for LLM

agents built upon feedback loops that allow LLM agents to iteratively refine their

communication and motion control policies through trial-and-error interactions with

confederate agents. Inspired by how humans reflect and debrief after a cooperative

game such as Hanabi, we enable agents to discuss cooperative strategies after each

52

interaction episode.

LLM
Reasoning

Driving
Decision

Message

Trajectories
Evaluation and
Feedback

Env Obs

Task/Goal

Cooperative
Strategy
Learned
Knowledge

“Long-term
Memory”

Reflection

“Something that you should
keep in mind for future driving”

Chain-of-Thought
Reasoning

LLM Policy Multi-Agent Interactions
In-episode Communication
and Informed Decision-Making

t t+1 ...

Post-episode
Communication Sharing
reasoning and discuss
cooperation strategies

Debriefing

My reasoning
was...That’s why
I did ... I
propose that we
should do ...

I see, then we
should probably
do ..

ok.Multi-Agent
Environment

Observations,
Reasonings,
Messages,
Decisions

Replay Buffer

Figure 4.1: LLM+Debrief agent framework and agent learning pipeline.

4.2.1 Agent Policy

An agent acts according to an LLM policy πi(Oi, {Mj}j∈F)→ ⟨Mi, Ci⟩, where

the distribution over actions follows the LLM used by the agent. Here, Oi represents a

comprehensive text observation encompassing task and goal descriptions, environment

details, and common traffic rules, expressed as a text sequence (prompt) {toi}. A

received message Mj = {tmj } and a message to send Mi = {tmi } are also text sequences

generated by language agents. Ci = {tci} represents a text sequence for high-level

commands. The joint probability of selecting a command and generating a message

is expressed as Pi({tmi }; {tci}|{toi}; {{tmj }}j∈F) where “;" indicates text concatenation

and the language model serves as the oracle to determine the probabilities.

In-Context Knowledge. Instead of fine-tuning the weights of LLMs via gradient-

based methods, we adapt the policy by modifying contexts. Define Ki = {tki } as

agent i’s accumulated knowledge and Si = {tsi} as its cooperative strategy. The

joint probability of generating commands and messages is then influenced by these

additional prompt tokens: Pi({tmi }; {tci}|{tki }; {tsi}; {toi}; {{tmj }}j∈F).

53

Chain-of-Thought (CoT) Reasoning. Research has shown that LLMs make de-

cisions better when provided with sufficient context (Wei et al., 2022). To leverage this

observation, we prompt LLMs to reason step-by-step about the environment, incor-

porating observations, received messages, and in-context knowledge. The reasoning

process generates an output text sequence Ri = {tri }. Following this reasoning, the

LLM agent generates structured action tokens by combining the reasoning with the

inputs: Pi({tmi }; {tci}|{tki }; {tsi}; {toi}; {{tmj }}j∈F ; {t
r
i }). The final output is in a JSON

format with keys: "command" and "message".

4.2.2 Agent Learning: Post-Episode Debriefing

The learning process is depicted in Figure 4.1. Initially, the LLM agents in-

teract with each other in the scenarios, accumulating experience, which is stored in

a replay buffer. Following the interaction phase, the agents engage in a debriefing

session where they utilize past experiences as context to collaboratively refine a co-

operative strategy. The outcomes of these discussions are distilled into two critical

components: knowledge (Ki = {tki }) and cooperative strategies (Si = {tsi}). These

components are subsequently integrated as in-context knowledge for future interac-

tions, playing a pivotal role in shaping and improving the policy.

Replay Buffer. We store transition data Ti = ⟨oi,t, ai,t, oi,t+1⟩, which includes

current and next observations, commands, messages, and reasoning in a replay

buffer, serving as a repository for further learning and iterative refinement. When an

episode concludes, the environment evaluates each agent’s performance and provides

scalar rewards along with verbal feedback, such as "Vehicle 109 collided with

Vehicle 110 after 2 seconds." or "Vehicle 111 stagnated for too long to

complete its task." Each transition in the replay buffer is subsequently retro-

spectively labeled with enriched metadata, including responses from other agents,

collision details (e.g., time to collision), time-out details, and final rewards and out-

comes.

54

Batch Context Sampling. Before engaging in the post-episode discussion (de-

briefing), each learning agent analyzes its past experience first. While analyzing the

entire trajectory would provide a comprehensive understanding of failure cases, com-

putational constraints necessitate sampling a subset (batch) of keyframes from its

replay buffer. To prioritize relevant data, the sampling process heuristically assigns

(following Equation A.1) higher probabilities to transitions that occur immediately

before collisions, involve actions contributing to collisions, or lead to stagnation due to

agents slowing down. Additionally, transitions that feature more intensive multi-agent

interactions are given more weight. These selected samples serve as the context for

subsequent analysis and strategy formulation, allowing the agent to focus on critical

timesteps for improving performance.

Debriefing. A debriefing session begins when an episode concludes in failure (col-

lision or stagnation) and is conducted in a turn-based manner over N rounds, with

a focus on improving cooperation in future interactions. The speaking order is deter-

ministic in this work for each session, and agents take turns speaking in a round-robin

format. The agent chosen to speak first is responsible for proposing a joint cooper-

ative strategy (S1,S2, ...Si∈F) for everyone participating in the debriefing (the focal

group). This agent begins by reasoning through its transition data batch, analyzing

the consequences and influence on other agents of its actions, and formulating a pro-

posed strategy. Subsequently, the other agents take turns sharing their perspectives,

providing feedback, or offering alternative insights based on their analysis of their

own experience batch. After the discussion, each agent summarizes the discussion to

develop individual cooperative strategies (Si) and knowledge (Ki). These outcomes

serve as in-context guidelines for future instances of the same driving tasks. This

joint discussion for future individual decision-making structure mirrors the principles

of the Centralized Training Decentralized Execution (CTDE) framework (Bernstein

et al., 2002), a widely used approach in multi-agent learning. Our implementation

details are available in Appendix A.1.1.

55

4.3 Environment: TalkingVehiclesGym

To provide concrete and typical driving scenarios that expose the Talking Ve-

hicles challenge, we have developed a simulation environment, TalkingVehicles-

Gym, which is a multi-agent gymnasium environment for the closed-loop evaluation

of urban driving policies. TalkingVehiclesGym supports a flexible configura-

tion of multi-agent scenarios, incorporating heterogeneous agents such as language

agents, sensory agents, human agents, heuristic behavior agents, etc. It also enables

in-episode communication between agents using a realistically simulated communi-

cation protocol MQTT. The simulation dynamics are built on CARLA (Dosovitskiy

et al., 2017), a high-fidelity urban driving simulator. Details about the simulation

framework are described in Appendix A.2.

Overtake Highway Merge Highway Exit

Negotiation

Overtake Red Light Left Turn Yield

Cooperative Perception

Figure 4.2: Overview of scenarios and agent roles. Green circles: Focal agents,
agents aim at establishing coordination through communication; Red circles: Potential
colliders; Blue circles: Background agents.

Scenarios (P) and Rewards (R). TalkingVehiclesGym has been set up

with several accident-prone scenarios (details in Table 4.1) where multi-agent com-

munication could be beneficial2, as shown in Figure 4.2. Scenarios labeled with

2Note on the Communication Mechanism. We adopt task-specific communication mechanisms in
this work. For cooperative perception tasks, we use a parallel communication protocol, allowing all
vehicles to transmit messages simultaneously. In contrast, for negotiation tasks, we employ a turn-
based communication scheme managed by a mediator, ensuring that only one agent communicates

56

https://mqtt.org/

Table 4.1: Example scenarios. Here we describe the fundamental composition of each
accident-prone scenario, where the background agents can be configured in terms of density,
controlling policies, and communication capabilities.

Interaction Type Scenario Name Description

Cooperative
Perception

Overtake A vehicle plans to overtake a broken and stopped
truck by moving into the opposite lane first and
then returning to its original lane. The truck can
still communicate, but the opposite-going car can
not communicate.

Left Turn Yield A vehicle tries to turn left on a left-turn yield light
when a line of trucks is blocking the view of the oppo-
site lane. The leading truck is able to communicate.

Red Light A vehicle is crossing the intersection when there is
another vehicle running the red light. The optical
sensor failed to sense the other vehicle because of
the lined-up vehicles waiting for a left turn, one of
which was able to communicate.

Negotiation
Overtake A vehicle is going to borrow the opposite lane to

overtake a stopped truck. The truck is not able to
connect, but an opposite-direction car can commu-
nicate.

Highway Merge A vehicle is going to merge onto the highway, but the
target lane has continuous traffic flows. A vehicle on
that lane is able to communicate and alter plans.

Highway Exit A vehicle is going to exit the highwa,y but it needs
to cross lanes where there is a traffic flow. A vehicle
in the flow is able to communicate and alter plans.

Cooperative Perception are cases where agents can benefit from receiving informa-

tion about regions beyond their own line of sight and scenarios tagged with Negotiation

are cases where it is necessary for the agents to discuss and resolve in their plans.

In each scenario, a focal group (F) of agents is defined. They operate alongside

background agents with pre-scripted behaviors. Each focal agent is assigned a task

described in natural language, with success defined as reaching its target location

at a time. This turn-based mechanism enhances stability in negotiation scenarios. In all negotiation
tasks, the first-defined vehicle is designated to initiate communication.

57

within a time limit without collisions. Agents without motion targets, such as a

stationary truck in cooperative perception tasks, do not earn rewards directly for

themselves. However, the optimization objective encourages these agents to send

messages that assist others in achieving their tasks.

Observation Space (O). Our environment integrates a diverse range of sensor

and simulator inputs inherited from CARLA. To focus on reasoning and multi-agent

learning, we simplify environmental perception for text-based agents by introduc-

ing a rule-based, partially observable captioner. This module abstracts away the

perception task, which would otherwise require object detection or vision-language

models, by directly converting scenario information—such as the states of the ego ve-

hicle and others, lane details, and road conditions—into natural language descriptions

that convey factual information while maintaining the partial observability imposed

by the agent’s line-of-sight sensors. For agents equipped with a transmitter/receiver

device (transceiver), real-time communication is enabled during episodes, and the

message dialog is included as part of ther observation. An example of a text-based

observation is provided in Appendix A.3.

Action Space (A). The action space for each agent encompasses both vehicle

control and communication. The control space C is three-dimensional, consisting of

throttle, brake, and steering. To reduce decision-making frequency, agents execute

high-level vehicle motion commands represented as temporal sequences of low-level

vehicle controls (Ct, Ct+1, ..., Ct+k), where each command spans k time steps. These

high-level commands are atomic actions such as go (adapt to a target speed),

stop, slow down, speed up, and change to the left lane. The message gener-

ation space M is restricted to natural language tokens in this work, but is flexible

enough to support other communication modes. In this work, messages are gener-

ated alongside the high-level control commands every 0.5 seconds (k = 10 simulation

steps).

58

4.4 Experiments

This section presents an empirical evaluation of LLM+Debrief and baseline

approaches across different cooperative driving scenarios. We investigate the following

research questions:

Q1 Can LLM agents establish collaboration through chain-of-thought reasoning with-

out prior interactions? (No.)

Q2 Does decentralized reflection enable LLM agents to improve their collaborative

ability as they gain more interaction experiences? (Yes.)

Q3 Does centralized discussion among LLM agents provide additional improvements

in collaboration and communication compared to decentralized reflection? (Yes.)

Q4 Can natural language communication enhance the performance and coordination

of LLM agents compared to those without communication? (Only if well trained.)

Metrics. Evaluation metrics are established based on the outcomes of agents who

can incur reward (reward-eligible) for their tasks in the focal group, which is scenario-

specific. For a scenario with N reward-eligible agents in the focal group, evaluated over

M episodes, we utilize two key metrics: 1. the average collision rate (CR), normal-

ized by the group size, is 1
N
· 1
M

∑M
m=1

∑
i∈F 1(agent i involved in a collision), where

collisions may involve both focal and background agents; 2. the average success

rate (SR), also normalized by the group size, is 1
N
· 1
M

∑M
m=1

∑
i∈F 1(agent i succeeded).

Here, 1 is the indicator function, equal to 1 if the event occurs and 0 otherwise.

The remaining failure cases, where agents exceed the time limit, heuristically deter-

mined to represent the upper bound for efficient task completion, without success

or collision, are captured by the average time out rate, which can be derived as

TR = 1− SR− CR.

59

Experimental Setup. For each baseline, We consider two settings labeled as

“Silent" and “Comm". In the “Silent” setting, LLM agents focus solely on controlling

the vehicle based on their individual perception and reasoning without communica-

tion. The “Comm" setting allows a method to generate either only messages or

both messages and driving commands. For each LLM-based learning method, we al-

low agents to interact for up to 60 episodes per scenario, which is a random sequence

alternating between safe (or randomized agent positions for highway negotiation set-

tings) and accident-prone configurations. We define a “solved" criterion for learning

success in a scenario as 20 consecutive successful episodes. Due to the uncontrollable

randomness in the OpenAI models, we give each learning method 3 knowledge reset3

opportunities to either report the “solved" result, otherwise the last run for each seed

is considered as its output. After learning, each method is evaluated for 30 episodes

per scenario configuration per seed. We report experimental results aggregated with

3 seeds.

Baselines. We established several baselines and scenarios to answer the research

questions:

1. an LLM agent using Chain-of-Thought (CoT) reasoning only (Zero-shot),

2. an LLM agent with CoT reasoning contextualized with knowledge from decen-

tralized reflection (Reflection),

3. an LLM agent that corrects past actions via self-reflection, storing these cor-

rections in a vector-based, retrievable memory and uses few-shot retrieved ex-

3Note on Knowledge Reset: Due to the inherent stochasticity in OpenAI models during the
time of our experiments, the knowledge acquired by the LLM agents may become unpredictably
corrupted throughout training. Therefore, we allow each LLM agent learning method up to three
knowledge resets (clearing the knowledge) before reaching a solved state indicator (defined by 20
consecutive successful episodes) or using the output policy of the final attempt after the last reset.
This strategy resembles the best-of-N sampling evaluation; however, the ground-truth evaluation of
the learning outcomes is costly to obtain, so our knowledge selection relies on the heuristic indicator
during training.

60

ample augmented generation (Correction+RAG). The retrieval augmented

method without communication (Correction+RAG (Silent)) adapts DiLU

(Wen et al., 2023a), a non-communicating single-agent LLM-based approach

that drives via reflection, to our environment. The multi-agent communication

extension of DiLU, AgentsCoDriver (Hu et al., 2024), resembles the Correc-

tion+RAG (Comm) method, but it does not actively optimize the messages.

For a fair comparison across baseline LLM agents, we do not initialize the

knowledge with human data, nor is there human involvement during the learn-

ing process.

Moreover, we apply the same batch context sampling method for reflection or correc-

tion for all LLM agent baselines as our method. Additionally, we include Cooper-

naut (Cui et al., 2022), a LiDAR-based cooperative driving method, as an aspira-

tional reference point for cooperative perception. Note that Coopernaut is not directly

comparable because it processes sensory data and communicates intermediate neural

representations rather than natural language.

4.4.1 Quantitative Results

Table 4.2 and Table 4.3 present the quantitative evaluation of all methods

across tasks. Notably, in this proof of concept, none of the LLM methods compared

operate in real-time, requiring approximately 10 real-world seconds per decision step

(0.5 seconds equivalent in simulation) using gpt-4o-mini. The inference latency

primarily depends on reasoning, but we demonstrate an approach towards real-time

inference in Section 4.4.3. On average, the natural language message bandwidth re-

mains below 300 bytes per decision step, requiring less than 0.01 Mbps communication

bandwidth. Table A.1 in Appendix A.1 provides detailed latency measurements and

message size statistics. Based on these results, we provide responses to the research

questions posed at the start of the section.

R1: LLM agents with CoT examined in this chapter do not establish

61

Table 4.2: Cooperative Perception scenarios. mean ± std over 3 trials, each using 30
evaluation episodes.

Method
Scenario Overtake (Perception) Red Light Left Turn

Name LLM Comm CR (%) ↓ SR (%) ↑ CR (%) ↓ SR (%) ↑ CR (%) ↓ SR (%) ↑

Zero-shot Yes No 93.3 ± 3.4 0.0 ± 0.0 93.3 ± 6.7 6.7 ± 6.7 93.3 ± 5.8 6.7 ± 5.8
+Reflection Yes No 87.8 ± 3.4 0.0 ± 0.0 94.4 ± 6.9 5.6 ± 6.9 76.7 ± 20.8 23.3 ± 20.8
+Correction+RAG Yes No 62.0 ± 31.9 4.4 ± 7.7 93.3 ± 3.3 6.7 ± 3.3 64.4 ± 15.0 35.6 ± 15.0

Zero-shot Yes Yes 91.1 ± 5.1 4.4 ± 5.1 60.0 ± 11.5 38.9 ± 10.7 85.6 ± 8.4 14.4 ± 8.4
+Reflection Yes Yes 63.3 ± 14.5 34.4 ± 10.7 37.8 ± 18.4 47.8 ± 18.4 51.1 ± 37.2 47.8 ± 36.0
+Correction+RAG Yes Yes 4.4 ± 1.9 90.0 ± 6.7 13.3 ± 12.0 66.7 ± 27.3 43.3 ± 38.4 38.9 ± 22.7
+Debrief Yes Yes 1.1 ± 1.9 94.4 ± 6.9 0.0 ± 0.0 93.3 ± 5.8 6.7 ± 3.3 92.2 ± 3.8

Coopernaut No Yes 4.5 ± 3.1 90.5 ± 1.2 17.7 ± 7.8 80.7 ± 7.6 18.1 ± 6.2 80.7 ± 5.2

Table 4.3: Negotiation scenarios. mean ± std over 3 trials, each using 30 evaluation
episodes.

Method
Scenario Overtake (Negotiation) Highway Merge Highway Exit

Name LLM Comm CR (%) ↓ SR (%) ↑ CR (%) ↓ SR (%) ↑ CR (%) ↓ SR (%) ↑

Zero-shot Yes No 89.9 ± 2.8 7.2 ± 3.8 100.0 ± 0.0 0.0 ± 0.0 33.3 ± 9.3 66.1 ± 9.2
+Reflection Yes No 32.8 ± 29.4 36.7 ± 52.1 15.0 ± 23.1 84.4 ± 22.6 32.8 ± 13.4 67.2 ± 13.4
+Correction+RAG Yes No 46.7 ± 21.9 33.3 ± 28.0 35.6 ± 29.4 64.4 ± 29.4 33.9 ± 28.4 51.1 ± 14.2

Zero-shot Yes Yes 87.8 ± 5.9 11.7 ± 6.7 67.2 ± 27.1 32.8 ± 27.1 53.3 ± 11.5 46.7 ± 11.5
+Reflection Yes Yes 55.6 ± 38.9 43.3 ± 37.1 20.0 ± 1.7 80.0 ± 1.7 53.9 ± 24.1 45.6 ± 23.6
+Correction+RAG Yes Yes 38.3 ± 6.0 61.1 ± 5.4 40.0 ± 18.0 60.0 ± 18.0 49.4 ± 49.2 43.3 ± 39.8
+Debrief Yes Yes 3.3 ± 3.3 95.6 ± 3.8 6.7 ± 11.5 93.3 ± 11.5 18.3 ± 21.7 81.1 ± 21.2

collaboration through communication in zero-shot interactions. Our experi-

ments show that Zero-Shot agents (gpt-4o-mini), even with communication enabled,

fail to coordinate effectively. The failure modes are (1) agents do not communicate

effectively to understand each other’s needs in perception or achieve agreement in

negotiation; or (2) even when the messages make sense to humans, agents do not

respond with appropriate driving commands. This result suggests that without prior

training or explicit strategies, chain-of-thought reasoning alone is insufficient to fos-

ter effective coordination. Future work could examine whether reasoning models like

gpt-o4 can overcome these failures.

R2: Decentralized learning can enable LLM agents to improve their

collaborative ability as they gain more interaction experiences. The de-

centralized learning methods, Reflection and Correction+RAG, show significant im-

62

provement in reducing collision rates from Zero-Shot across tasks. Reflection allows

agents to individually analyze their experience to generate knowledge, but the knowl-

edge is often more reactive than proactive (see Appendix A.4.7 for example). The

Correction+RAG method records successful episodes to preserve successful coordi-

nation patterns and correct commands and messages at key frames selected through

heuristic batch sampling. However, although the method improves the control re-

sponse strategy, we find that it qualitatively does not always generate messages that

are consistent with the actions, possibly due to the open-loop revisions. Both methods

show promise but have room for improvement.

R3: Centralized debriefing enhances coordination more than decen-

tralized reflection. The debriefing method, which focuses on generating explicit

cooperation strategies, enables LLM agents to achieve more stable collaboration com-

pared to decentralized reflection or zero-shot approaches, evidenced by higher success

rates than baselines across tasks. The main performance boost comes from the for-

malized coordination strategy, which both defines how to communicate and how to

respond given a dialogue. Interestingly, this method reveals that LLMs sometimes

fail to understand complex natural language messages, so the agents eventually de-

velop concise communication protocols (like “hold" and “go" in Appendix A.4.8) to

ensure their intentions are easily interpretable among themselves. However, open

challenges still remain. For example, the debriefing process can go awry where no

agents can find issues with the cooperation strategies in harder and longer-horizon

tasks like negotiation-highway-exit. We further provide detailed qualitative anal-

ysis in Section 4.4.2.

R4: Natural language communication in cooperative driving can be

effective, but may pose safety risks without good communication strate-

gies. Our method, which operates with natural language communication, provides a

proof of concept for natural-language-based multi-agent coordination across scenar-

ios. However, learning to communicate effectively remains challenging. In coopera-

tive perception tasks, communication-enabled methods consistently outperform silent

63

ones, highlighting the critical role of information sharing. In contrast, in negotiation

scenarios such as highway-merge and highway-exit, agents generally perform better

in silent mode. This result suggests that communication adds complexity and can

hinder coordination when not well-optimized. We speculate that the root cause lies in

the suboptimal communication strategies learned under decentralized training, where

messages may introduce noise rather than useful signals.

4.4.2 Qualitative Analysis

This section uses the negotiation-highway-merge scenario as an example

scenario to analyze policy behaviors and qualitatively examines the learned knowledge

and cooperation strategies. For detailed insights into the learned knowledge, please

refer to Appendix A.4, and refer to the videos (https://talking-vehicles.github.

io/) for comprehensive demonstrations of policy behaviors.

First, we present a recorded communication exchange between agents in a

demonstrative video:

Vehicle 121 (on the highway): Vehicle 120, I am slowing down to
create a gap for your merge. Please proceed safely.

Vehicle 120 (merging) replied: Thank you, Vehicle 121, I will
speed up to merge into the gap you create. Please maintain your
speed to facilitate my merge.

This form of communication is human-interpretable, paving the way for

future human participation in multi-agent collaboration. In contrast, the (x, y, z, feature)

latent representation generated by Coopernaut lacks interpretability for humans

and requires all vehicles in the collaboration system share the same encoder, limiting

its flexibility in mixed-autonomy settings. While in this work we do not enforce that

the communication be suitable for humans to participate in the collaboration directly,

the results suggest that it may be possible to move in that direction in the future by

enforcing short, real-time messages.

64

https://talking-vehicles.github.io/
https://talking-vehicles.github.io/

Second, the in-context knowledge developed through the debriefing process

demonstrates a clear and coherent cooperation strategy, defining each agent’s

role and their coordination mechanisms (Appendix A.4.5), in contrast to the purely

reactive policies formed through self-reflection without explicit discussion of cooper-

ation strategies (Appendix A.4.7).

Third, agents behave according to their learned knowledge and co-

operation strategy. In the negotiation-highway-merge scenario, the debriefing-

based policy’s behavior follows the developed structured cooperation strategy: when

the merging vehicle requests to enter the highway, highway vehicles explicitly slow

down to create a gap, enabling a smooth and coordinated merge. In contrast, under

the Correction+RAG (Silent) mode, the lack of a clear cooperation strategy leads

to uncertainty. Both merging and highway vehicles struggle to determine the right

of way, often resulting in either a collision or a prolonged, indecisive interaction at

the junction. We encourage readers to watch the supplementary videos accompa-

nying this chapter for a deeper understanding of the qualitative differences between

policies.

4.4.3 Cross-Scenario Generalization and Distillation towards Real-Time

Up to this point, a separate policy was trained to handle each of the Talk-

ingVehiclesGym scenarios. However, for practical deployment, it is desirable to

develop a single policy that can handle a broad range of challenging driving scenarios.

We explore two independent approaches for achieving cross-scenario generalization:

Centralized Memory and Distillation.

In the Centralized Memory approach, we aggregate all agents’ most ef-

fective knowledge—identified by the highest estimated success rate across learning

trials—into a unified vector memory. This memory supports unified policy execution

across multiple tasks by retrieving relevant experiences based on the agent’s current

observation.

65

In the Distillation approach, we conduct full-parameter fine-tuning of a com-

pact language model, DistilGPT2 (Radford et al., 2019; Sanh et al., 2019), to di-

rectly imitate the behavior of the large memory-augmented LLM+Debrief agent.

The imitation dataset is constructed by aggregating all successful evaluation episodes

across scenarios. The distillation model is trained using token-level cross-entropy loss

to match the output distribution of the large model. During inference, decisions are

generated through softmax sampling with a temperature of 0.2.

We evaluate the performance of each unified policy independently across dif-

ferent scenarios using three random seeds, reporting the mean performance and the

standard error of the mean (1 SEM) in Table 4.4. For reference, we also report the

performance statistics of the individually selected knowledge (Debrief (per-scenario)).

The Centralized Memory policy maintains strong performance across tasks.

However, we observe a performance drop in overtaking scenarios (perception-overtake

and negotiation-overtake). We hypothesize that this drop is due to structural

and objective similarities across tasks, leading the memory to occasionally retrieve

mismatched strategies. Moreover, negotiation-based tasks require proactive commu-

nication initiation by the agent, whereas perception-focused tasks do not, further

exacerbating mismatches in coordination strategies. These findings raise important

challenges for future research on ad hoc teamwork and generalizable communication

protocols.

The Distillation model achieves decision generation times between 100 ms

and 470 ms on an NVIDIA A40 GPU, depending on message generation length (50

bytes to 300 bytes), getting close to the 500 ms decision-making frequency (as shown

in Table 4.5). Remarkably, the distilled model generalizes well across scenarios and

even surpasses the performance of its teacher model in some cases. We observe that it

tends to behave overly conservatively in perception-overtake scenarios, suggesting

room for further improvement, potentially through expert-guided correction methods

such as DAgger (Ross et al., 2011a).

66

Table 4.4: Experimental results for Generalization across scenarios. Each policy
is evaluated using three random seeds, with 30 episodes per seed. We report the mean
performance over the 30 episodes, along with one standard error of the mean across seeds.
Debrief (per-scenario) represents policies learned individually for each scenario and serves
as an oracle baseline for comparison with the generalization performance of Centralized
Memory and Distillation.

Method
Scenario Overtake (Perception) Red Light Left Turn

CR (%) ↓ SR (%) ↑ CR (%) ↓ SR (%) ↑ CR (%) ↓ SR (%) ↑

Debrief (per-scenario) 1.1 ± 1.1 98.9 ± 1.1 0.0 ± 0.0 96.7 ± 0.0 4.4 ± 2.9 94.4 ± 2.2
Centralized Memory 2.2 ± 1.1 93.3 ± 1.9 0.0 ± 0.0 100.0 ± 0.0 4.4 ± 2.9 93.3 ± 3.3
Distillation 0.0 ± 0.0 83.3 ± 1.9 0.0 ± 0.0 91.1 ± 4.4 0.0 ± 0.0 96.7 ± 0.0

Method
Scenario Overtake (Negotiation) Highway Merge Highway Exit

CR (%) ↓ SR (%) ↑ CR (%) ↓ SR (%) ↑ CR (%) ↓ SR (%) ↑

Debrief (per-scenario) 10.0 ± 3.8 87.2 ± 3.9 2.2 ± 2.2 97.8 ± 2.2 13.3 ± 6.0 86.7 ± 6.0
Centralized Memory 12.2 ± 2.9 86.7 ± 1.9 1.1 ± 1.1 98.9 ± 1.1 16.1 ± 4.8 82.8 ± 5.3
Distillation 10.0 ± 3.3 88.9 ± 4.4 0.0 ± 0.0 100.0 ± 0.0 3.3 ± 0.0 96.7 ± 0.0

Table 4.5: Decision latency, message size using distilled LLM policy

Latencies
Scenario Overtake Left Turn Red Light Overtake Highway Merge Highway Exit

Decision Latency (s) 0.45 0.44 0.38 0.14 0.19 0.20
Message Size (bytes) 223.3 297.9 223.0 28.0 59.0 59.0

4.5 Related Work

This research is closely aligned with recent advancements in LLM agents for

autonomous driving. Our key contribution is a novel multi-agent learning framework

in which LLM-based agents learn to communicate and collaborate using natural lan-

guage. Unlike prior approaches that rely on imitation from human data, our method

leverages self-play interactions to develop effective communication protocols and co-

operative behaviors. In the following, we provide a review of the development of LLM

agents in the context of autonomous driving.

LLM Agents for Autonomous Driving. LLM agents have shown potential to

address various autonomous driving tasks. In particular, they are promising in tack-

ling corner cases (Wen et al., 2023b) due to their reasoning ability and the common-

67

sense knowledge embedded, yielding a more generalizable autonomous driving stack.

Recent studies have explored various approaches to tailor state-of-the-art LLMs for

driving (Wen et al., 2023a; Hu et al., 2024). However, a foundational challenge lies in

grounding LLM agents in the real world—they need to perceive and understand the

traffic scenarios. A straightforward approach is to obtain the observations from oracle

perception models (Mao et al., 2023b) and convert them to textual descriptions (Mao

et al., 2023a; Sha et al., 2023; Jin et al., 2023; Cui et al., 2023b). Some other studies

tackled this challenge by introducing Visual Language Models (VLMs), which are

adapted to driving domains through in-context instruction tuning (Ma et al., 2023)

or fine-tuning (Wayve, 2023; Xu et al., 2023b; Ding et al., 2023; Yang et al., 2023). To

enhance LLM agents’ reasoning ability, prior works have investigated incorporating

handcrafted guidance and examples in the prompts (Sha et al., 2023; Jin et al., 2023;

Cui et al., 2023b), structuring the reasoning procedure (Mao et al., 2023b; Sima

et al., 2023), and fine-tuning the models on driving datasets. Notably, fine-tuning

LLMs and VLMs requires an extensive amount of driving data with language labels.

Several approaches have attempted to adapt existing language-driving datasets for

LLM fine-tuning (Ding et al., 2023; Xu et al., 2023b; Ma et al., 2023) or augment

large-scale multimodal driving datasets (Caesar et al., 2020; Sun et al., 2020; Mao

et al., 2021) with language labels (Qian et al., 2023; Shao et al., 2023; Sima et al.,

2023; Nie et al., 2023). In contrast, our work generates scalable driving data through

agent self-play. Note that existing models were predominantly evaluated in an open-

loop fashion. In contrast, similar to some prior work (Shao et al., 2023; Sha et al.,

2023; Jin et al., 2023), we conduct closed-loop evaluation of the proposed method and

baseline methods in CARLA (Dosovitskiy et al., 2017). More importantly, none of

the existing work has explored optimizing LLM agents in a multi-agent setting with

natural language vehicle-to-vehicle communication. AgentsCoDriver (Hu et al., 2024)

and LangCoop (Gao et al., 2025) represent concurrent but distinct efforts.

68

4.6 Summary, Limitations, and Future Work

This chapter introduces the Talking Vehicles problem, a novel setting for multi-

agent autonomous driving in which vehicles communicate and coordinate using nat-

ural language. We contribute a multi-agent simulation environment, TalkingVehi-

clesGym, and present LLM+Debrief, a self-play learning framework that equips

LLM agents with the ability to generate, interpret, and act upon natural language

messages through reflective and collaborative debriefing (contributes along Dimen-

sion A (Communication-Supporting Representations) and Dimension C (Collabo-

rate with Human-Like Agents) introduced in Chapter 1). Our experiments demon-

strate that, while zero-shot LLMs fail to establish effective coordination, iterative

learning via decentralized reflection and centralized debriefing substantially improves

cooperative performance across both perception and negotiation scenarios. Further-

more, we show that these learned behaviors can be distilled into efficient models

capable of generalizing across diverse driving tasks under real-time constraints. This

study represents an important step toward integrating natural language as a universal

protocol for V2V communication, bridging the gap between human-understandable

coordination and autonomous decision-making.

While our work provides promising initial evidence of the potential of LLM

agents and LLM+Debrief’s in addressing the Talking Vehicles problem, it comes

with several limitations and opens up rich directions for future research.

Idealized Agent Perception. In this work, the LLM agents rely on text obser-

vations, assuming an idealized perception system. This choice stems from the strong

performance of current LLMs and the early-stage development of multi-modal mod-

els. However, TalkingVehiclesGym environment supports multi-modal sensory

input. Future work may develop agents that integrate multi-sensor perception and

reasoning to fully leverage the rich context in realistic observations.

69

Communication Challenges. We assume that agents intend to communicate

truthfully, reliably conveying their intentions and following through on their stated

decisions. However, real-world vehicle-to-vehicle communication faces numerous chal-

lenges, including time delays that result in outdated information and the risk of ad-

versarial or deceptive messages. Future research chould develop methods to handle

these challenges, ensuring timely and secure exchanges of information. Techniques

such as real-time data verification and robust communication protocols will be critical

for enhancing the reliability and safety of vehicle-to-vehicle communication systems.

Training Scalability and Ad Hoc Teamwork. While this chapter reports on

a successful proof-of-concept, the scalability of LLM+Debrief to learn in diverse

traffic scenarios and different environmental conditions has not been exhaustively

tested. A limitation of our method is that, although it is sample-efficient, requiring

only a few interaction episodes, the analysis must occur immediately after an episode

concludes, which hinders scaling up learning. Future work could potentially scale

up the training using multi-agent reinforcement learning to finetune the agents while

using strong Kullback–Leibler regularization with a foundation model to ensure the

agents speak human language during self-play. Additionally, future work may address

ad hoc teamwork, where agents adapt to collaborators following different conventions.

Human Interface and Human Evaluation. To extend these methods to human-

autonomous cooperation, intuitive and user-friendly interfaces (e.g., speech) are essen-

tial. Although our research opens up the potential for autonomous cars to cooperate

with human drivers, the complexity of effective communication interfaces for humans

is substantial. Comprehensive human-centered evaluations using human-friendly in-

terfaces are deferred to future studies.

Next, we will move to the topic of generalizing to previously unseen opponents

or teammates in multi-agent systems.

70

Part III

Learning to Generalize

71

Chapter 5

Generalizing to Adversarial Opponents

In this dissertation, policy generalization refers to the agent’s ability to maintain

acceptable performance when interacting with previously unseen agents, which is an

essential capability for agents to adapt to the future human-AI society. To promote

generalization, this dissertation adopts the philosophy of population-based training,

encouraging the generation of a diverse population of training partners with

whom the agent can interact and learn.

This chapter investigates policy generalization in adversarial settings, using

cache-timing attacks (CTA) as a representative example (Section 5.1). Cache-

timing attacks exemplify a class of computer security problems where decades of re-

search have involved manually identifying new attacks and designing heuristic-based

detectors. We aim to automate this attack–defense cycle to enhance the generaliza-

tion ability of learned detectors. In contrast, Chapter 6 focuses on generalization in

cooperative multi-agent settings.

Leveraging Empirical Game-Theoretic Analysis (EGTA), this chapter intro-

duces MACTA (Section 5.3), a population-based method that generates increas-

ingly diverse opponents through iterative training. It integrates Fictitious Play

(Brown, 1951) with Proximal Policy Optimization (PPO) (Schulman et al., 2017)

to advance the study of CTA problems. In addition, this chapter contributes a re-

72

alistic multi-agent simulation environment, MA-AutoCAT (Section 5.2), which

models the interactions among attackers, benign programs, and detectors.

Experimental results (Section 5.4) demonstrate that MACTA produces a wide

range of attackers that effectively camouflage themselves as benign programs. Detec-

tors trained with MACTA exhibit strong resilience against novel, adaptive attackers,

reducing the worst-case number of successful attacks by 20%.

Overall, this chapter presents a population-based multi-agent learning frame-

work that improves generalization to unknown adversaries in the context of cache-

timing attack detection. This directly contributes to Dimension B: Multi-Agent

Policy Generalization of the core research question explored in this dissertation.

This work was published in the Proceedings of the 11th International Con-

ference on Learning Representations (ICLR) in 2023. The author developed the

MACTA framework and led the experimental evaluation under the supervision of Xi-

aomeng Yang, Wenjie Xiong, and Yuandong Tian. The author, together with Mulong

Luo, Geunbae Lee, and Wenjie Xiong, contributed to the design and construction of

the MA-AutoCAT environment. Mulong Luo additionally validated the discovered

attack patterns on real hardware. Peter Stone, Hsien-Hsin Lee, Benjamin Lee, and

G. Edward Suh provided mentorship, guidance, and in-depth feedback throughout

the project.

5.1 Problem Statement: Cache Timing Attacks

The cache timing attack challenge is a fundamental problem to address as such

kinds of attacks are stealthy but powerful. We introduce the domain knowledge and

problem formulation in this section.

73

5.1.1 Domain Description

A cache is a small and fast on-chip memory device commonly used in modern

processor designs to reduce latency of memory accesses. Accessing memory addresses

whose data are available in a cache is fast (called a “cache hit"). If the data is not

in the cache, data has to be retrieved from the main memory, which is much slower

(called a “cache miss”).

Surprisingly, this timing difference in memory accesses due to caching could

leak information across different programs/processes executing with a shared cache,

a vulnerability known as cache timing attacks (CTA).

As shown in Figure 5.1(a), CTA involves the attacker process and the victim

process both sharing the same cache. An example (Prime+Probe CTA (Liu et al.,

2015)) is given in Figure 5.1(b). The victim’s memory access will evict the attacker’s

cache line from the cache, causing latency changes in the attacker’s future memory

accesses. Thus, the attacker can infer whether the victim made access to a specific

memory address by observing its own memory access latency, and thus be able to

infer the victim’s private information.

A0 A1 A2 A3 Cache

A0 V1 A2 A3 Cache

Attacker accesses A0, …, A3
and occupies the whole cache

Victim accesses one of the secret address
In this example: victim accesses V1

Attacker accesses A0, Cache Hit (Fast access)
Attacker accesses A1, Cache Miss (Slow access)
Victim’s secret address must be V1!

A1 A2 A3 CacheA0

(1) Attacker Prime:

(3) Attacker Probe:

(2) Victim access:
0 1 2 3 Cache

Attacker Process
Virtual Memory Space

Victim Process
Virtual Memory Space

A0 A1 A2 A3

V0 V1 V2 V3

Hit Hit HitMiss

(a) (b)

Figure 5.1: (a) Cache timing channel attack is formed when the attacker process and the
victim process use the same locations of a shared cache for their memory accesses. (b) An
example of Prime+Probe CTA in a 4-set direct-mapped cache. The attacker process can
infer which memory address the victim process accesses by observing the latency.

74

5.1.2 Problem Statement

In this work, our goal is to jointly find novel attackers and robust detector

policies that can generalize to unseen opponents, leading to insights for future cache

design. The problem of joint learning can be formulated as a general-sum Partially

Observable Stochastic Game (POSG) (Chapter 2) , where the attacker and detector

have limited observations and optimize for their own cumulative return. Given the

finite set of policies, the resultant attacker is the best response to a mixture of all

detector policies explored, and the resultant detector is the best response to a mixture

of all attacker policies explored.

Partially Observable Stochastic Games (POSGs) Formally, an n-player episodic

POSG can be described using a tuple {I, T ,S,P , {A}ni=1, {O}ni=1, {R}ni=1, γ}, where

I is the finite set of players, T is the episode length, S is the true state space, P is

the state transition probability. Ai is the action space of player i, and the joint action

space of all agents is {A}ni=1 = A1×A2...×An. Similarly, Oi is the observation space

of player i, and Ri is the reward function for player i. Lastly, γ ∈ [0, 1] is a reward

discount factor. In POSGs, each agent only has access to its own observations and

actions, and its goal is to maximize the cumulative episodic reward for itself given

the opponents’ policies, J i(πi, π−i) = E
[∑T

t γ
trit|s0, ait ∼ πi(st), a

−i
t ∼ π−i(st)

]
.

A Nash Equilibrium (NE) (Chapter 2) is one solution concept to POSGs.

Formally, a NE is defined as a saddle point for any player’s policy πi, we have

J i(πi
∗, π

−i
∗) ≥ J i(πi, π−i

∗),∀i ∈ N . Namely, given all other agents’ equilibrium poli-

cies π−i
∗ , there is no motivation for agent i to unilaterally deviate from its current

policy πi
∗ to achieve higher returns.

5.2 Environment: MA-AutoCAT

To study the learning dynamics of the attackers and the detectors in CTA,

we develop MA-AutoCAT, a gym (Brockman et al., 2016a) environment that mod-

75

els realistic multi-agent CTA interactions. We build the environment based on a

cache simulator, which faithfully models cache state changes, following practices in

prior works on CTA detection schemes (Harris et al., 2019; Mirbagher-Ajorpaz et al.,

2020). Note that experimenting detectors on real processors requires hardware modi-

fications, which is prohibitively expensive. Figure 5.2 demonstrates the environment

components and game mechanism.

Detector
Agent

Attacker Program

r: Successful Attack without alarm: Attacker receives reward
 Unsuccessful Attack: Attacker receives penalty

r: Correct Alarm: Detector receives reward
 False Alarm or False Negative: Detector receives penalty

Attack Scenario
Victim Program

or
Benign Program 1
Benign Program 2
Benign Scenario

Cache
simulatora: If Detector alarms:

Terminate the programs

o: Observe latency

a: Memory accesses
by both programs

o: Observe memory
accesses by both programs

Figure 5.2: We propose MA-AutoCAT, a multi-agent environment to jointly explore and
optimize the policies of the attacker and the defender processes in CTA. In this environment,
multiple agents can play different roles and learn from each other. The end goal is to learn
policies that can generalize to deal with previously unseen opponents (e.g., those designed
by human heuristics).

In MA-AutoCAT, each agent plays a different role, and each role has a

specific goal (i.e., reward), a different level of privileged accessibility (i.e., observation)

to the information of the environment, and a different way to take actions (i.e., action

space), listed as below:

Benign Program (B) accesses memory in a regular way, implemented by

replaying an offline log of memory accesses from regular programs (e.g., a standard

benchmark suite such as SPEC (Bucek et al., 2018)). It has no observation and no

policy needs to be learned.

Victim (V) accesses memory with addresses that depend on a secret. Studies

have shown that such secret-dependent memory accesses are common in real-world

applications (e.g., HTTP parser), libraries (e.g., OpenSSL), and Linux kernel (Jo-

hannesmeyer et al., 2022; Qi et al., 2021; Oleksenko et al., 2020). In CTA, a victim’s

76

secrets usually contain multiple bits, and attackers target one bit at a time; after

guessing one bit of a secret, the attacker moves to the next bit. To model this in our

environment, the secret bit is reset after the attacker’s attempt to guess the secret

and the victim accesses an address depending on the secret when triggered.

Attacker (A) aims to obtain the secret memory address of the victim process,

by checking the patterns of latency of memory accesses. An attacker may learn a

policy to pick which memory addresses to access, and observes the binary latency

signal (slow/fast). The attacker can also trigger the victim process to execute, regain

control after its execution, and guess the secret address of the victim if it is confident

to do so. Importantly, the attacker can only see the latency of its own accesses.

Detector (D) aims to raise the alarm as soon as possible when an attacker

is present while avoiding a false alarm for benign programs. As a system process, we

assume that the detector can observe memory accesses to the cache sets of all running

processes in the environment. The detector will terminate an episode if an alarm is

raised.

See Appendix B.2 for detailed specifications of the observations, actions, and

rewards.

In each episode, we may pick multiple agents of different roles to be in the

environment and let them interact. In this work, we mainly test the following two

possible scenarios:

• Attack Scenario (DAV). The environment contains a detector, an attacker, and

a victim. The attacker aims to obtain the secret address of the victim. The

detector aims to detect the presence of an attacker and terminate processes as

soon as possible.

• Benign Scenario (DBB). The environment contains a detector and two benign

programs with no malicious intent. In this case, the detector should not raise

any false alarms.

77

We leave more complicated settings, such as scenarios with both victims and benign

programs (e.g., DAVB) as future work.

5.3 Method: MACTA

The CTA that we consider is a POSG with three fundamental characteris-

tics: (1) Partial Observability. In CTA, the attacker knows which program to

attack but can only see the attacker’s own actions and latencies, while the detector

does not know if there is any attacker nor which program the attacker is targeting.

(2) Sparse-Reward Markov Game. The CTA game can have a long episode

length, and agents have to come up with a good action sequence before receiving the

reward. Especially, the attacker must learn both low-level skills to perform attacks

and high-level strategies to avoid defenders. (3) Environment Randomness. Such

randomness comes from randomized victim secret addresses and the random trajec-

tory sampling of benign programs. We propose our method based on the three crucial

features.

MACTAIBR-PPO

Q learns policy against P using PPO QP

Detector 1

Attacker 1

Detector 2 Detector 3

Attacker 2 Attacker 3

Detector 1

Attacker 1

Detector 2 Detector 3

Attacker 2 Attacker 3

Figure 5.3: Method. Iterated Best Response PPO (IBR-PPO) learns the best response
to the previous opponent only, while MACTA learns the best response to a uniform mixture
of all historical opponents.

In this chapter, we introduce our approach, MACTA (Figure 5.3 Right), as

an initial solution to the CTA challenge using MARL. MACTA adopts Transformers

(Vaswani et al., 2017) as the neural encoder of policy nets, Proximal Policy Optimiza-

tion (PPO) (Schulman et al., 2017) as the policy learning algorithm, and Fictitious

Play (FP) (Brown, 1951) as the game-theoretic tool.

78

To deal with history-dependent partial observations and sparse rewards, both

the attacker and the detector are equipped with policy nets with Transformer en-

coders. The Transformer encoder is mainly composed of scaled dot-product attention

and multi-head self-attentions. It can effectively integrate information from long time

horizons and large-scale data while not suffering from vanishing or exploding gradients

in recurrent neural networks (RNNs) (Parisotto et al., 2020).

The attacker and the detector optimize their policies by the PPO algorithm to

effectively learn a policy in the Markov game. Although independent reinforcement

learning, where all agents are updating their policies simultaneously, is notoriously

known for the instability issue in training (Tan, 1993), if we only train one agent

at a time and keep others stationary, then other agents can be taken as a part of

the environment, and PPO can effectively optimize the policy for higher cumula-

tive rewards. Iterated Best Response PPO (IBR-PPO) (Figure 5.3 Left) is the most

naive way of implementing the above idea. It alternates the training of the attacker

and detector so that they learn the best policy against the most recent opponent.

However, it may fall into the cyclic policy learning and never converge to any Nash

Equilibrium (Roughgarden, 2010).

As a widely accepted method in MARL, creating a diverse pool of opponents

and learning the best response to a mixture of them can alleviate the cyclic issue and

help with generalization. Similar to fictitious play in game theory, we create a pool for

each agent and add their historical policies to the pool. Concretely, for each iteration

τ , we denote the set of policies explored until τ of agent i by our method as Πi
τ , the

opponents’ joint policy set as Π−i
τ . Then we learn the best response (BR), πi

∗(U(Π−i
τ)),

to the uniform mixture of the opponents’ policy pool using a best response learner

(e.g. PPO), and add the best response to the policy pool. Mathematically, for each

iteration

∀i : Πi
τ+1 ←− Πi

τ ∪ {πi
∗(U(Π−i

τ))} (5.1)

where −i represents all players except for player i, and U is the uniform distribution.

79

There are more advanced meta game frameworks like Double Oracle (McMahan

et al., 2003) and Policy Space Response Oracle (Lanctot et al., 2017), which measure

the meta game payoff matrix among different explored policies and solves the matrix

for the best opponent mixture. In our case, since the environment contains some

randomness, it is inefficient to precisely estimate the payoff matrix. We thus leave

exploring more advanced game frameworks as future work.

The above components constitute our approach (Algorithm 3 in Appendix B.7).

MACTA alternates the training of attacker and detector every E epochs and adds

one deterministic policy checkpoint of the learning agent to the agent’s policy pool

every N epochs. During one agent’s training, the agent faces a uniform mixture of all

opponents’ past deterministic policy checkpoints. Note that we create such a mixture

by uniformly sampling policies from the opponent’s policy pool at each action step.

Implementation Details. 1 Specifically, we start with empty policy pools for both

agents, first train the attacker for 50 epochs (each epoch contains 3000 training steps)

to gain the basic skills of obtaining information from the victim program, and add

one policy to the attacker’s policy pool every 10 epochs. Then we stop the attacker’s

training and switch to train the detector against the pool of the first 5 attacker

policies for 50 epochs. Similarly, the detector will have 5 policies by the end of

this training iteration (50 epochs). The above process is repeated until the target

training iterations (1800 epochs). We adopt an Actor-Critic implementation of PPO

for both the attacker and the detector, and both the policy net and the value net

are 1-layer 8-head Transformer encoders with different output heads. We leverage

the RLMeta (Yang et al., 2022) learning framework for the PPO implementation,

which is an asynchronous version of PPO with sampling and learning in parallel, and

construct our multi-agent learning framework on top of it. For stabilizing the self-play

1Our implementation is available at https://github.com/facebookresearch/macta.

80

https://github.com/facebookresearch/macta

process, we also apply dual-clip PPO (Ye et al., 2020). Refer to Appendix B.7 for a

more detailed description of training and environment hyper-parameters.

5.4 Experiments

This section introduces our experiment designs to explore the following re-

search questions:

Q1 Can MACTA generate both strong detectors and diverse attackers? (MACTA

produces a wide range of attackers that effectively camouflage themselves among

benign programs, while MACTA detectors demonstrate strong generalization to

previously unseen threats.)

Q2 How resilient are the MACTA detectors to exploitation? (They significantly hin-

der the learning of new attackers and reduce the worst-case number of successful

attacks by 20%.)

Q3 Which neural architecture performs best in the CTA game: MLP, LSTM, or

Transformers? (Transformers.)

5.4.1 Evaluation Setup and Metrics

To evaluate the proposed MARL method, we compare with a few attacker

and detector baselines. For attackers, we consider a textbook attack Prime+Probe

(Algorithm 4), an RL-based attacker (AutoCAT) (Luo et al., 2023), and the PPO with

Iterated Best Response Oracle (IBR-PPO) attacker. For detectors, we include our

implementation of CC-Hunter (Chen and Venkataramani, 2014) and Cyclone (Harris

et al., 2019) (Appendix B.8), and IBR-PPO Detector.

In this work, we employ episode return and intuitive metrics including Attack

Correct Rate, Attacks per Episode, Detection Rate, Episode Length, and

False Alarm Rate. Details are listed in Table 5.1.

81

Table 5.1: Evaluation metrics.

Metrics Object Description

Attack Correct Rate Attacker Measures the ability of an attacker to infer a secret correctly
(attack successfully). It is the percentage of correct guesses
among all guesses aggregated over episodes.

Attacks per Episode Attacker,
Detector

Measures the speed of an attacker or the attacker’s ability to
bypass detection or the detector’s ability to prevent attacks.
It is the average number of correct guesses per episode.

Detection Rate Attacker,
Detector

Detection rate is the percentage of DAV episodes alarmed
by the detector within the time limit in the evaluated DAV
episodes.

Episode Length Attacker,
Detector

Measures how fast the detector can find out the existence
of the attacker.

False Alarm Rate Detector Measures the false positive (terminate episode before time
limit) rate of a detector given all benign agents.

5.4.2 Benign Dataset

We use the Standard Performance Evaluation Corporation (SPEC) 2017 bench-

mark suite (Bucek et al., 2018) to represent benign programs, and obtain their mem-

ory access traces using the gem5 simulator (Binkert et al., 2011). We then generate

benign traces by combining the memory accesses from two programs based on the

simulation timestamps. We introduce the details of the Train/Val/Test dataset in

Appendix B.3.

5.4.3 Results

All the experiment results below are reported on an 8set-1way L1 cache. The

attacker’s memory address range is 8-15 and the victim’s secret address is randomly

chosen between 0-7. The episode length is 64 steps. To evaluate different methods, we

report the statistics based on three independent training instances for each learning-

based method and control the final policies from different instances of a method

undergoing the same number of optimization steps.

82

5.4.3.1 Attacker Performance

Table 5.2: Attacker performance. Evaluation of the attacker’s correct rate and number
of attacks in 64-step episodes without detectors. Statistics are reported on three independent
evaluations of 10,000 episodes.

Metrics
Attackers Prime+Probe AutoCAT IBR-PPO Attacker MACTA Attacker

Attack Correct Rate (%) ↑ 100.0 ± 0.0 100.0 ± 0.1 99.9 ± 0.1 100.0 ± 0.1
Attacks per Episode ↑ 3.0 ± 0 5.2 ± 0.1 5.2 ± 0.1 4.3 ± 0.3

We first evaluate the attacker agent’s performance in terms of attack correct

rate and the number of attacks in an episode, to validate that the attacker agent

is conducting effective attacks. Table 5.2 shows that every attacker evaluated can

achieve a decent attack correct rate, indicating the agent acquires effective attack

policies. In addition, the MACTA attacker has the smallest number of attacks per

episode among the learning-based methods, because it learns to obfuscate itself as

a benign program. Example attack sequences demonstrating the strategic attack

behaviors can be found in Appendix B.4.

5.4.3.2 Head-to-Head Evaluations

In this head-to-head evaluation, we have an attacker play against a detector

from different training instances for 10,000 episodes and report the mean detection

rate and the mean episode length for all attacker and detector pairs. The head-to-

head evaluation results can be found in Table 5.3 and Table 5.4. We also report the

mean false alarm rate and the mean episode length of the detectors on unseen Benign

agents in the last column of the table.

We find that the heuristic detector CC-Hunter cannot effectively discrimi-

nate the RL attackers from benign agents since the episodes are too noisy and too

short to compute meaningful auto-correlations. Tuning the auto-correlation thresh-

old only returns either a high false alarm rate or a low detection rate. The anomaly

detector, Cyclone (One-Class SVM), is more effective at detecting high-bandwidth

attackers such as AutoCAT and IBR-PPO attackers, yet it struggles with detecting

83

Table 5.3: Mean detection rate (%). Head-to-head evaluations with unseen opponents
from different training instances. The higher the better for detectors when the opponent
is an attacker, and the lower the better when the opponents are benign programs. ‘()’ as
Cyclone (SVM) is trained on Prime+Probe.

Detectors
Opponents Prime+Probe ↑ AutoCAT ↑ IBR-PPO Attacker ↑ MACTA Attacker ↑ Benign ↓

CC-Hunter (thold=0.45) 37.7 ± 0.6 13.7 ± 1.3 12.1± 0.4 16.4 ± 2.3 27.6 ± 0.9
Cyclone (One-Class SVM) 0.0 ± 0.0 55.8 ± 4.3 33.6 ± 12.8 9.0 ± 5.3 19.3 ± 0.9
Cyclone (SVM) (99.5 ± 0.1) 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 1.4 ± 0.2
IBR-PPO Detector 0.9 ± 0.7 7.3 ± 20.5 6.4 ± 15.6 8.4 ± 21.9 0.4 ± 0.5
MACTA Detector 97.8 ± 0.9 99.9 ± 0.2 99.6 ± 0.4 31.2 ± 18.5 1.1 ± 0.2

Table 5.4: Mean episode length (steps). Head-to-head evaluations with unseen oppo-
nents from different training instances. The lower the better for detectors when the opponent
is an attacker, and the higher the better when the opponents are benign programs. Cyclone
and CC-Hunter both require a fixed episode length of 64 steps.

Detectors
Opponents Prime+Probe ↓ AutoCAT ↓ IBR-PPO Attacker ↓ MACTA Attacker ↓ Benign ↑

IBR-PPO Detector 63.4 ± 0.4 59.6 ± 12.4 60.1 ± 9.5 58.9 ± 12.2 63.7 ± 0.3
MACTA Detector 16.4 ± 1.1 12.0 ± 2.8 12.5 ± 2.2 50.5 ± 8.7 63.4 ± 0.1

low-bandwidth attackers like Prime+Probe and MACTA attacker and has a high

false alarm rate. The SVM detector with Cyclone features is able to perform well

(99.5% detection rate) on the heuristic attack (Prime+Probe) that it is trained on,

but has low detection rate on RL attackers. Another drawback of these previous

methods is that they require fixed-length observation that is longer than the steps

needed to complete attacks (usually 12 steps in this cache configuration). IBR-PPO

falls into the cyclic policy learning issue; the detector is able to react well (98.3%

detection rate) to the attacker that it is trained against but fails to respond well to

other attackers.

MACTA, however, is able to generalize to unseen attacks such as Prime+Probe

and the IBR-PPO attacker. At the same time, MACTA also has a low false positive

rate and fast detection speed which prevents further information leakage. We hypoth-

esize that MACTA can abstract the general pattern of the attackers from interacting

with diverse attacker strategies during training.

On the other hand, since the detector is trained to block all the previous

84

attack policies, the attacker had to explore a new policy space to evade detection. The

MACTA attackers are able to evade a variety of unseen detectors. The above findings

highlight the benefits of using MARL solution concepts in learning the detectors.

5.4.3.3 Exploitability Evaluations

We measure how a detector can be exploited by adaptive attackers, by fixing a

detector strategy and training an RL exploiter (i.e., an attacker) against the detector

by dual-clip PPO from scratch. The training curve of the exploiters of MACTA

detectors can be found in Figure 5.4. As the training time of the MACTA detec-

tors increases, it becomes more difficult for an RL attacker to bypass the detectors.

Specifically, it will take the RL exploiter attacker longer to find a meaningful attack

strategy. And even though the RL exploiter attacker can learn to attack eventually,

the number of attacks per episode decreases from around 5.0 attacks per episode (No

Detector) to about 4.0 attacks per episode (MACTA-18th), leading to about 20%

reduction in a learning attacker’s bandwidth. The decrease in the number of attacks

can come from the slower attack speed (to reduce the chance of detection) or faster

detection speed so fewer attacks can be performed.

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

E
pi

so
di

c
A

tta
ck

er
 C

or
re

ct
 R

at
e

No Detector
MACTA-9th
MACTA-18th

0 20 40 60 80 100
Epoch

0

1

2

3

4

5

N
um

be
r o

f A
tta

ck
s

pe
r E

pi
so

de

50
th

 E
po

ch

No Detector
MACTA-9th
MACTA-18th

Figure 5.4: Exploitability evaluation. We fix the detector policies (No Detector, detec-
tor of 9th and 18th fictitious play iterations in MACTA (MACTA-9th, MACTA-18th)) and
train an RL attacker against the detectors from scratch. Left: Average Episodic Attacker
Correct Rate. Right: Attacker’s Number of Attacks per episode.

85

0 50Epoch

20

10

0

10

20

30

40

50
E

pi
so

de
 R

et
ur

n
Transformer
LSTM
MLP

0 50Epoch

20

10

0

10

20

30

40

50 Transformer
LSTM
MLP

0 50Epoch

20

10

0

10

20

30

40

50 8head-1layer
8head-2layer
1head-1layer

0 50Epoch

20

10

0

10

20

30

40

50 8head-1layer
8head-2layer
1head-1layer

Figure 5.5: A study on neural architectures. We use a Transformer with 8-head
attention and one Transformer encoder layer in MACTA experiments. Left two: Train
attacker-only tasks using different neural architectures on two machines. Right two: Train
attackers with different Transformer configurations on two machines.

5.4.4 Ablation Study on Neural Architecture

Our CTA task is an example where neural architecture plays a critical role

in learning a meaningful policy. We train attacker-only tasks using different network

architectures on different machines (details in Appendix B.6) as shown in Figure 5.5.

For PPO attackers, MLP with residual connections (He et al., 2016b;a) fails to achieve

a high episode return, while the Transformer and LSTM (Hochreiter and Schmidhu-

ber, 1997) networks succeed. For Transformers, our study shows that increasing the

number of encoder layers in the Transformer can slightly improve the return but is

less efficient in wall time. On the other hand, reducing the number of heads slows

down learning. The above evidence suggests that the sequence modeling structure is

critical for CTA attack policy learning. Our hypothesis is that a successful attack is

composed of a series of events, which may contain history-dependent relations among

events, and Transformers can effectively model such relations. While the prior work

(Luo et al., 2023) also shows that Transformers can be used for RL CTA attacker, we

provide more in-depth studies on different model architectures in this work.

5.5 Related Work

This section reviews prior work on three fronts relevant to our study: (1) the

design of detectors for cache timing attacks, (2) game-theoretic approaches to model-

86

ing security problems, and (3) population-based methods in multi-agent reinforcement

learning. We highlight how our method, MACTA, differs from existing approaches

by focusing on the automated discovery of novel attack and defense strategies in a

realistic and dynamic environment.

Detectors for Cache Timing Attacks CC-Hunter (Chen and Venkataramani,

2014) proposes to detect cache-timing attacks using recurrent patterns generated

during cache contention between attack and victim processes. More specifically, it

uses autocorrelation to detect periodic interleaving between the two event trains. Re-

playConfusion (Yan et al., 2016) records and deterministically replays a program’s

memory traces, changing the mapping of cache addresses but retaining the cadences.

Executing the traces in different memory addresses can expose abnormal access pat-

terns observed between an attacker and a victim, which do not exist in benign traces.

Cyclone (Harris et al., 2019) uses cyclic interference from cache contention during an

attack. This detector assigns domain tags to processes, then uses performance coun-

ters to enumerate abnormal cache contention behaviors triggered by each domain tag.

PerSpectron (Mirbagher-Ajorpaz et al., 2020) trains a neural network classifier using

the memory and latency event logs generated from attack examples. The follow-up

work EVAX (Mirbagher-Ajorpaz et al., 2022) improves the classifier accuracy using

generative adversarial networks (GAN). Existing detectors based on known attacks

cannot deal with evolving attackers. Our study shows that the RL attacker can learn

novel strategies to bypass existing static detectors. MACTA solves this problem by

enabling auto-discovery of attacker policies.

Game Theory in Security Games Game theory provides a framework for decision-

making and strategy, modeling how selfish agents interact and affect system outcomes.

In Stackelberg games, a defender must first commit limited resources to protect dis-

parate locations and an attacker that subsequently targets locations, potentially hav-

ing seen the configuration of defenses (e.g., (Bier et al., 2007)). Such games have

87

masked systems from probes (Schlenker et al., 2018), defended systems against varied

attack types (Thakoor et al., 2020), and assigned human analysts to automated sys-

tem alerts (Schlenker et al., 2017). Whereas Stackelberg requires the defender to move

first, we consider how the defender’s policy should respond to the attacker’s evolving

policy. Game theory inspires GAN for security (Zolbayar et al., 2021; Baimukan and

Zhu, 2021). Unlike prior works that explore adversarial samples in the neighborhood

of a heuristic attack policy, our RL approach explores a broader, unknown space of

attack policies with a well-defined objective. RL is an instance of stochastic games,

often modeled by a Markov Decision Process. Representative studies of such games

for distributed systems include threat detection and resource allocation (Krishna-

murthy et al., 2007; Fan et al., 2019). To the best of our knowledge, we are the first

to formulate a stochastic game for realistic, practical hardware timing attacks.

Population-based Multi-agent Reinforcement Learning Independent Rein-

forcement Learning in multi-agent environments suffers from the non-stationary op-

ponent issue (Tan, 1993). While Iterated Best Response methods alleviate the above

problem by learning from stationary opponents; they tend to over-fit to other play-

ers’ policies and cause cycles in policy learning (Vinyals et al., 2019). Interacting

with diverse opponent policies or heterogeneous agents is one effective way to avoid

such cycles. Population-based MARL is thus proposed to solve large-scale extensive

form games by creating a diverse pool of agents. Related work includes population-

based reinforcement learning (Parker-Holder et al., 2020b), Neural Fictitious Self-

Play (Heinrich and Silver, 2016), Fictitious Co-Play (Strouse et al., 2021), prioritized

self-play (Vinyals et al., 2019), Double Oracle (DO) (McMahan et al., 2003) and its

generalization Policy Space Response Oracle (PSRO) (Lanctot et al., 2017). The

most closely related applications of population-based MARL to security games, such

as those of Eghtesad et al. (2020) and Wang et al. (2019), use variants of Double

Oracle, but they deal with different and less stochastic domains than ours.

88

5.6 Summary, Limitations, and Future Work

In conclusion, this chapter explores how game-theoretic reinforcement learning

could be implemented to enable zero-shot generalization (Dimension B of the key

research question in Chapter 1) and robustness against adaptive exploiters in the

cache timing attack and detection domain. We first introduce the environment MA-

AutoCAT that allows learning for both attackers and detectors, and their complex

interactions with caches. Then we propose to combine the game-theoretic concept of

Fictitious Play and Proximal Policy Optimization to train both agents (MACTA).

Empirically, we found that the detector generated by MACTA can capture the general

pattern of attacks and generalize to unseen attacks. The exploitability study of the

detector also indicates the detectors can impede the learning process of adaptive

attackers and slow down the attacks. On the other hand, the MACTA attacker is

able to explore new policy space and mimic the benign agents to bypass the detectors.

Finally, the neural architecture study demonstrates the strong representability of

Transformers.

Beyond the empirical findings and their implications for practical deployment,

we also identify several theoretical and algorithmic limitations that warrant further

investigation.

Deployment in Real Systems. We use a cache simulator to study CTA, but

we believe the trained attacker and detector can be applied to real hardware with

sufficient engineering efforts. For attackers, Luo et al. (2023) demonstrates that an

attack pattern learned in a cache simulator can be applied to multiple Intel proces-

sors. Similarly, we also show that the attack sequences from a MACTA attack can

work on commercial processors in Appendix B.5. For the detectors, with hardware

changes, the neural network model can be deployed inside a processor with a reason-

able area and power overhead, as demonstrated by Mirbagher-Ajorpaz et al. (2020).

Future work could study how the attacker and detector could be deployed in the real

89

production environment.

Convergence of the Policies. In MACTA, we adopt the Transformer-based PPO

algorithm as the policy learning oracle, so there is no guarantee that the algorithm will

return the best response to the opponents in limited optimization steps. Meanwhile,

little previous work discusses the convergence of Fictitious Play when it is used as a

game-theoretic meta solver in the general-sum MARL setting. As training continues,

we observe that the detector’s ability to generalize slightly diminishes, indicating that

it is forgetting some past attacks. We hypothesize it can relate to the convergence of

one player’s policy, which causes low policy diversity in the pool.

The next chapter will introduce a method for multi-agent policy generalization

by generating diverse training partners.

90

Chapter 6

Generalizing to Cooperative Teammates

Chapter 5 introduced a method for generating diverse adversarial opponents to pro-

mote generalization to previously unseen opponents. In this chapter, we shift our

focus to cooperative scenarios. The foundation of this chapter lies in the research

area of Ad Hoc Teamwork (AHT), where an agent must quickly adapt to cooper-

ate with previously unseen teammates (hereafter referred to as “unseen” or “novel ”

teammates, or simply “teammates” when unambiguous).

This chapter explores the principles underlying the ad hoc teamwork problem.

We begin by observing that a core challenge of AHT can be addressed by enabling

an agent to emulate the set of all best-response policies that cover a wide range of

possible teammate behaviors—referred to as the coverage set (Section 6.1). We

then introduce the notion of a minimum coverage set (MCS): the smallest set

of policies such that for any possible teammate policy, there exists a best response

within the MCS. We further show how this set can be approximated (Section 6.2).

Building on the concept of MCS, we propose the L-BRDiv algorithm, which

jointly estimates the MCS of an environment and uses it to generate a diverse set of

teammates for AHT training via a constrained optimization formulation (Section 6.3).

The policies generated by L-BRDiv are designed to induce robust adaptation by en-

couraging the AHT agent to emulate responses from the MCS. We provide experimen-

tal evidence showing that L-BRDiv produces more robust AHT agents than existing

91

state-of-the-art teammate generation methods, while requiring fewer hyperparameters

(Section 6.4).

This chapter presents a population-based, constrained-optimization learning

framework that generates a diverse set of teammates that do not share the same best

response. It contributes to Dimension B: multi-agent policy generalization of

the core research question explored in this dissertation.

This work was published in the thirty-eighth Proceedings of the AAAI Confer-

ence on Artificial Intelligence (AAAI 2024). The author partially contributed to the

theoretical derivation of the MCS concept and the design of the proposed L-BRDiv

method. Muhammad Arrasy Rahman led the theoretical development and method

implementation and conducted the experiments. Peter Stone provided valuable feed-

back for this work.

6.1 The Ad Hoc Teamwork Problem

The interaction between agents in an AHT environment can be modeled as

a decentralized partially observable Markov decision process (Dec-POMDP) (the

reward-sharing version of POSG in Section 2.2).

Existing AHT methods learn policies for a robust AHT agent by interacting

with teammate policies from the training teammate policy set, Πtrain = {π−1, π−2, . . . , π−K}.

The AHT agent then optimizes its policy to maximize its returns in interactions with

policies from Πtrain. The objective of these existing AHT methods can be formalized

as:

π∗,i(Πtrain) = argmax
πi

Eπ−i∼U(Πtrain),
ait∼πi,

a−i
t ∼π−i,P,O

[
∞∑
t=0

γtR(st, at)

]
, (6.1)

with U(X) denoting a uniform distribution over setX. The learned AHT agent

policy, π∗,i(Πtrain), is then evaluated for its robustness. Given an evaluated π∗,i(Πtrain),

this robustness measure, MΠeval

(
π∗,i(Πtrain)

)
, evaluates the expected returns when the

92

AHT agent deals with teammates uniformly sampled from a previously unseen set

of teammate policies, Πeval. We formally define MΠeval

(
π∗,i(Πtrain)

)
as the following

expression:

Eπ−i∼U(Πeval),ait∼π∗,i(Πtrain),

a−i
t ∼π−i, P,O

[
∞∑
t=0

γtR(st, at)

]
, (6.2)

The dependence of π∗,i(Πtrain) on Πtrain then implies that Equation 6.2 is also

determined by Πtrain.

The goal of an AHT teammate generation process is to find Πtrain producing

an AHT agent policy that maximizes Equation 6.2 amid unknown Πeval. Given the

objective of AHT training from Equation 6.1 and the definition of the robustness

measure from Equation 6.2, the objective of an AHT teammate generation process is

to find the optimal set of training teammate policies, Π∗,train, formalized as:

argmax
Πtrain

EΠeval∼U(Π)

[
MΠeval

(
π∗,i(Πtrain)

)]
, (6.3)

While uniformly sampling Πtrain from Π may appear to be a reasonable solution to

produce Π∗,train, training an AHT agent using Πtrain may produce low returns if we

only sample a limited number of policies from Π. When Π contains many possible

teammate policies, the exact policies included in Πtrain becomes important to ensure

that the AHT agent is robust when collaborating with any teammate policy in Π.

6.2 Minimum Coverage Sets

Assuming knowledge of Πeval, the robustness of an AHT agent as defined by

Equation 6.2 can be optimized by using Πeval as teammate policies for AHT training.

Given a teammate modeling component that accurately infers an unknown team-

mate’s policy from Πeval and an action selection component that can emulate any

policy in the set of best-response policies to policies in Πeval, BR(Πeval), an AHT

agent’s robustness is maximized by following the best-response policy to the inferred

93

Set of Teammate Policies ()

MCS(E)

(a) Best-response policies to each
π−i ∈ Π.

Sample Teammate Policies

Set of Teammate Policies ()

AHT Training

AHT Agent
Emulates

Interaction

AHT Agent Best-Response
Policies

(b) Generating Πtrain based on identified best-response
policies.

Sample Teammate Policies

Set of Teammate Policies ()

AHT Training

AHT Agent
Emulates

Interaction

AHT Agent Best-Response
Policies

(c) AHT training against Πtrain and the expected results when dealing with previously unseen
teammate policies.

Figure 6.1: Leveraging MCS(E) for generating robust AHT agents. Figure 6.1a
visualizes how teammate policies (points in the large triangle) can be grouped based on
their best-response policies. The rectangle then shows an example MCS(E). From each
subset of Π sharing the same best-response policy (colored small triangles), Figure 6.1b
visualizes how one policy is sampled from each subset to create Πtrain for AHT training.
As visualized in Figure 6.1c, using our generated Πtrain for AHT training should encourage
agents that emulate the best-response policy (dashed squares) to any π−i ∈ Π when dealing
with teammates from Πeval (squares whose color represents its best-response policy).

teammate policy. Unfortunately, Πeval being unknown makes this ideal training pro-

cess impossible.

94

Improving an AHT agent’s robustness without knowing Πeval is still possible

by identifying the coverage set of an environment. Denoting an environment char-

acterized by a Dec-POMDP as E, any set containing at least one best-response policy

to each teammate policy in Π is a coverage set of an environment, CS(E). CS(E) is

formally characterized as:

∀π−i ∈ Π,∀Ht,∃π∗ ∈ CS(E) :

Es0∼p0 [R∗,−i(Ht)] = max
πi∈Π

Es0∼p0 [R,i,−i(Ht)] ,
(6.4)

where Ri,−i(H) denotes the following expression:

Ri,−i(H) = E aiT∼πi(.|HT),

a−i
T ∼π−i(.|HT),

P,O

[
∞∑
T=t

RT (sT , aT)

∣∣∣∣∣Ht = H

]
. (6.5)

Given this definition, a CS(E) remains a coverage set when policies are added. Thus,

Π itself is trivially a coverage set.

Irrespective of Πeval, CS(E) will contain at least a single best-response policy to

any π−i ∈ Πeval since Πeval ⊆ Π. An AHT agent capable of emulating any policy from

CS(E) consequently can follow any policy from BR(Πeval) for any Πeval. Therefore,

training an AHT agent to emulate any policy from CS(E) gives us a solution to design

robust AHT agents even when Πeval is unknown.

Considering CS(E) may contain policies that are not a best-response policy to

any member of Π, we ideally only train AHT agents to emulate a subset of CS(E)

that consists of policies that are the best-response to some π−i ∈ Π. Based on this

idea, we define the minimum coverage set of an environment, MCS(E) ⊆ Π, that is

a coverage set ceasing to be a coverage set if any of its elements are removed. This

characteristic of MCS(E) is formalized as:

∀πi ∈ MCS(E) : MCS(E)− {πi} is not a coverage set. (6.6)

In the example provided in Figure 6.1a, MCS(E) = {π1, π2, π3} is an MCS since the

elimination of any policy, π, from it cause a subset of Π to not have their best-response

policy in MCS(E)− {π}.

95

Our work aims to design AHT agents capable of emulating any policies from

MCS(E) by constructing Πtrain in a specific way. If Πtrain is constructed for each

πi ∈ MCS(E) to have a π−i ∈ Πtrain such that πi ∈ BR({π−i}), using Πtrain while

optimizing Equation 6.1 enables us to achieve this goal. The role of MCS(E) in our

teammate generation process is visualized in Figure 6.1b and Figure 6.1c.

6.3 L-BRDiv: Generating Teammate Policies By Approximat-
ing Minimum Coverage Sets

Self-play
interaction

Cross-play
interaction

Expression 12

Updated to maximize objective via MAPPO

Self-play return estimates

Cross-play return estimates

Updated to maximize objective via MAPPO

Updated to
minimize

objective via
gradient
descent

Weighted
Summation

Lagrange
Multipliers ()

1

1

Figure 6.2: Lagrangian Best Response Diversity (L-BRDiv). The L-BRDiv al-
gorithm trains a collection of policy networks (purple and orange boxes) and Lagrange
multipliers (green cells inside the black rectangle). The purple boxes represent a policy from
{πi}Ki=1 ⊆ Π while the policies visualized as an orange box is from {π−i}Ki=1 ⊆ Π. Estimated
returns between any possible pairs of policy, (πj , π−k) ∈ ({πi|πi ∈ Π}Ki=1 × {π−i|π−i ∈
Π}Ki=1), and their associated Lagrange multipliers are used to compute the optimized term
in the Lagrangian dual form (right red box) via a weighted summation operation (black dot-
ted lines connect weights and multiplied terms). The policy networks are then trained via
MAPPO (Yu et al., 2022) to maximize this optimized term, while the Lagrange multipliers
are trained to minimize the term via stochastic gradient descent.

This section introduces our proposed teammate generation method based on

estimating MCS(E). Section 6.3.1 details a constrained objective we use to estimate

MCS(E). Finally, Section 6.3.2 provides a method that solves the constrained objec-

96

tive to jointly estimate MCS(E) while generating Πtrain.

6.3.1 Jointly Approximating MCS(E) and Generating Training Partners

Discovering MCS(E) by enumerating the AHT agent’s best-response policy to

each teammate policy is intractable given the infinite policies in Π. Instead, we can

estimate MCS(E) by eliminating policies from a finite CS(E) to generate MCS(E).

Given a finite CS(E), an AHT agent policy is not a member of MCS(E) if it is not

the best response to any teammate policy.

We check if πi ∈ CS(E) is the best-response policy of at least one policy from

Π by solving the feasibility problem, which is the following constrained optimization

problem:

max
π−i∈Π

Es0∼p0 [Ri,−i(Ht)], (6.7)

with the following constraints:

∀πj ∈ (CS(E)− {πi}) :

Es0∼p0 [Rj,−i(Ht)] ≤ Es0∼p0 [Ri,−i(Ht)].
(6.8)

Any CS(E) member that violates the above constraint for all π−i ∈ Π is not a member

of MCS(E). While this approach relies on knowing a finite CS(E), note that knowledge

of a finite CS(E) is sometimes available. For instance, the set of all deterministic

policies is a finite CS(E) for environments with a finite action space and state space.

Applying the above procedure to find MCS(E) can still be impossible for two

reasons. First, a finite CS(E) can be unknown. Second, the size of CS(E) may be

prohibitively large, which prevents solving the feasibility problem for all πi ∈ CS(E).

Amid these challenging problems, we resort to estimating MCS(E) by only discovering

its subset with K policies, MCSest(E) = {πi}Ki=1.

We now describe an alternative constrained optimization objective that jointly

finds MCSest(E) while generating a set of teammate policies for AHT training, Πtrain =

{π−i}Ki=1, according to the method illustrated in Figure 6.1. Two characteristics are

97

desired when finding MCSest(E). First, we require each AHT agent policy from

MCSest(E) to only be the best-response policy to one teammate policy from Πtrain, πi.

The second characteristic prioritizes the discovery of MCS(E) members that enables

the AHT agent to produce high returns with a designated teammate policy, π−i ∈ Π.

These two requirements are formulated as the following constrained optimization

problem:

max
{πi}Ki=1⊆Π,

{π−i}Ki=1⊆Π

∑
i∈{1,2,...,K}

Es∼p0 [Ri,−i(Ht)] , (6.9)

with the following constraints that must be fulfilled for all i, j ∈ {1, 2, . . . , K} and

i ̸= j:

Es∼p0 [Rj,−i(Ht)] + τ ≤ Es∼p0 [Ri,−i(Ht)] , (6.10)

Es∼p0 [Ri,−j(Ht)] + τ ≤ Es∼p0 [Ri,−i(Ht)]. (6.11)

Note that a near-zero positive threshold (τ > 0) is introduced in the constraints to pre-

vent discovering duplicates of the same πi and π−i, which turns Constraints Equation 6.10

& Equation 6.11 into equality when τ = 0.

6.3.2 Lagrangian BRDiv (L-BRDiv)

We present the Lagrangian Best Response Diversity (L-BRDiv) algorithm

to generate Πtrain that encourages an AHT agent to emulate MCSest(E). L-BRDiv

generates Πtrain by solving the Lagrange dual of the optimization problem specified by

Equation 6.9 and Equation 6.11, which is an unconstrained objective with the same

optimal solution.

98

The Lagrange dual for our optimization problem is defined as:

min
A⊆RK(K−1)

≥0

×RK(K−1)
≥0

max
{πi}Ki=1⊆Π,

{π−i}Ki=1⊆Π

(∑
i∈{1,...,K}

Es0∼p0 [Ri,−i(Ht)] +

∑
i,j∈{1,...,K}

i ̸=j

αi,j
1 (Es0∼p0 [Ri,−i(Ht)− τ −Rj,−i(Ht)])+

∑
i,j∈{1,...,K}

i ̸=j

αi,j
2 (Es0∼p0 [Ri,−i(Ht)− τ −Ri,−j(Ht)])

)
, (6.12)

with A = {(αi,j
1 , α

i,j
2)|αi,j

1 ≥ 0, αi,j
2 ≥ 0}i,j∈{1,2,...,K},i ̸=j denoting the set of optimizable

Lagrange multipliers.

L-BRDiv learns to assign different values to Lagrange multipliers in A of

(Equation 6.12). Optimizing Lagrange multipliers gives L-BRDiv two advantages

over previous methods, which treat these hyperparameters as constants. First, we

demonstrate in Section 6.4 that L-BRDiv creates better Πtrain by identifying more

members of MCS(E). Second, it does not require hyperparameter tuning on appro-

priate weights associated with cross-play return, which in previous methods require

careful tuning to discover members of MCS(E) (Rahman et al., 2023) and prevent

the generation of incompetent policies not achieving high returns against any AHT

agent policy (Charakorn et al., 2023).

We provide details of the teammate generation process undergone in L-BRDiv

in Algorithm 1. L-BRDiv implements the policies optimized in the Lagrange dual as

neural networks trained with MAPPO (Yu et al., 2022) to maximize the weighted

advantage function (Equation 6.14), whose weights correspond to the total weight

associated with each expected return term in (Equation 6.12). At the same time, L-

BRDiv trains a critic network to bootstrap the evaluation of (Equation 6.12) instead

of a Monte Carlo approach, which can be expensive since it requires all generated

policy pairs to initially follow the observation-action history, Ht. Meanwhile, the

Lagrange multipliers are trained in Lines 12-13 to minimize (Equation 6.12) while

ensuring it is non-negative.

99

Algorithm 1 Lagrangian Best Response Diversity
Require:

Cardinality of MCSest(E) and Πtrain, K.
Randomly initialized policy networks in MCSest(E) & Πtrain, denoted by {πi

θi
}Ki=1

& {π−i
θ−i
}Ki=1 respectively.

Randomly initialized critic network V j,−i
θc

, target V j,−i
θ′c

.
Initial values for the Lagrange multipliers, A.

1: for tupdate = 1, 2, . . . , Nupdates do
2: (i, j) ∼ U({1, 2, . . . , K}2)
3: D ← AgentInteraction(πj

θj
, π−i

θ−i
)

4: for (Ht, at, rt, Ht+1) ∈ D do
5: // Critic Optimization Step
6: Update θc with SGD & a target critic to minimize(

V j,−i
θc

(Ht)− rt − γV j,−i
θ′c

(Ht+1)
)2

(6.13)

7: // Policy Optimization Step

8: wi,j(A)←

1 +
∑
k ̸=j

(
αi,k
1 + αi,k

2

)
, i = j

−
(
αi,j
1 + αj,i

2

)
, i ̸= j

9: Update θj and θ−j with MAPPO to maximize:

wi,j(A)
(
rt + γV j,−i

θc
(Ht+1)− V j,−i

θc
(Ht)

)
(6.14)

10: if tupdate mod Tlagrange = 0 then
11: // Lagrange Multiplier Optimization Step
12: Update A using SGD to minimize Equation 6.12 where ∀i, j ∈
{1, 2, . . . , K}:

Es0∼p0 [Rj,−i(Ht)] ≈ V j,−i
θc

(Ht) (6.15)

13: A← {max(α, 0) | α ∈ A}
14: end if
15: end for
16: end for
17: Return {π−i

θ−i
}Ki=1

100

6.4 Experiments

In this section, we describe the environments and baseline algorithms in Section 6.4.1

and Section 6.4.2. Section 6.4.3 then details the experiment setups for evaluating

the robustness of AHT agents in L-BRDiv and baseline methods via their gener-

ated training teammate policies. Finally, we present the AHT experiment results

and an analysis of MCSest(E) policies identified by L-BRDiv in Section 6.4.4 and

Section 6.4.5.

This chapter aim to investigate and verify the following research questions:

Q1 Is L-BRDiv effective in generating meaningfully diverse teammates? (Yes.)

Q2 Does the diverse teammates generated by L-BRDiv facilitate fast adaptation of

the AHT agents? (Yes.)

6.4.1 Environments

We run our experiments in four two-player cooperative environments. The first

environment is a repeated matrix game where agents have three actions, whose reward

function is provided in Figure 6.3a. Since eliminating self-sabotaging behaviour (Cui

et al., 2023a) is not the focus of our work, we remove teammate-related information

and actions from an agent’s observation such that self-sabotaging behaviour is not

a member of possibly discovered teammate behaviours, Π. We also do experiments

in the Cooperative Reaching environment (Rahman et al., 2023) where two agents

can move across the four cardinal directions in a two-dimensional grid world. Both

agents are given a reward of 1 once they simultaneously arrive at the same corner grid.

The third environment is Weighted Cooperative Reaching, which is similar to Coop-

erative Reaching except for a modified reward function (Figure 6.3c) that provides

lower rewards if both agents arrive at different corner cells. The last environment is

Level-based Foraging (LBF) (Christianos et al., 2020), where both agents must move

along the four cardinal directions to a cell next to the same object and retrieve it

101

10 0 4
0 6 4
4 4 6

(a) Repeated Matrix Game.

(b) Coop Reaching.

A B C D
A 10 0 6 6
B 0 10 6 6
C 6 6 8 0
D 6 6 0 8

(c) Weighted Coop Reaching.

(d) LBF.

Figure 6.3: Environments for AHT experiments. We provide experiments in a re-
peated matrix game whose reward function is displayed in Figure 6.3a. Figure 6.3b displays
an example state of the Cooperative Reaching environment where the green stars represent
corner cells that provide agents rewards once they simultaneously reach it. If we start from
the top-left corner cell in Figure 6.3b and assign IDs (A-D) to corner cells in a clockwise
manner, Figure 6.3c shows the reward function of the Weighted Cooperative Reaching en-
vironment where agents’ rewards depend on which pair of destination cells the two agents
arrive at. Finally, Figure 6.3d shows a sample state of Level-based Foraging (LBF) where
the apples represent the collected objects.

by simultaneously selecting actions for collecting objects. Successful object collection

gives both agents a reward of 0.33.

6.4.2 Baseline Methods

Our experiments compare L-BRDiv against BRDiv (Rahman et al., 2023) and

LIPO (Charakorn et al., 2023). Comparing L-BRDiv and BRDiv helps investigate

102

the detrimental effect of using fixed uniform weights instead of L-BRDiv’s optimized

Lagrange multipliers (A). Meanwhile, including LIPO as a baseline enables us to

investigate the advantage of L-BRDiv and BRDiv’s use of weights with a larger mag-

nitude for self-play maximization (i.e. wi,i(A) in Equation 6.14) compared to the

weights for cross-play minimization (i.e. wi,j(A) in Equation 6.14). As justified in

Section 6.5, these two policies are more appropriate baselines for L-BRDiv than any

other teammate generation algorithms that we are aware of.

6.4.3 Experiment Setup

We start our experiments for each environment by generatingK training team-

mate policies using the compared methods. We ensure fairness in our experiments

by using RL2 algorithm (Duan et al., 2016) to find an optimal AHT agent policy

defined in Equation 6.1 based on Πtrain generated by each teammate generation al-

gorithm. Since our partially observable environments provide no useful information

to infer teammate policies except for rewards obtained at the end of each interaction

episode, we choose RL2 since it can use reward information to create agent represen-

tations maintained and updated across multiple episodes. For each of the compared

algorithms, the teammate generation and AHT training process are repeated under

four seeds to allow for a statistically sound comparison between each method’s per-

formance. As a measure of robustness, we then evaluate the average returns of the

AHT agent trained from each experiment seed when collaborating with policies sam-

pled from Πeval. We construct Πeval for each environment by creating heuristic-based

agents, whose behaviour we describe in Appendix C.1. Finally, we compute the mean

and 95% confidence interval of the recorded returns across four seeds and report it in

Figure 6.4.

103

0 10 20 30 40 50
Total Timesteps (x20000)

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25
R

et
ur

ns
 P

er
 E

pi
so

de
Generalization Performance in Repeated Matrix Game

Algorithm
L-BRDiv
BRDiv
LIPO

(a) Repeated Matrix Game.

0 10 20 30 40 50
Total Timesteps (x240000)

0.4

0.5

0.6

0.7

0.8

0.9

R
et

ur
ns

 P
er

 E
pi

so
de

Generalization Performance in Coop Reaching

Algorithm
L-BRDiv
BRDiv
LIPO

(b) Coop Reaching.

0 10 20 30 40 50
Total Timesteps (x240000)

4.5

5.0

5.5

6.0

6.5

7.0

R
et

ur
ns

 P
er

 E
pi

so
de

Generalization Performance in Weighted Coop Reaching
Algorithm

L-BRDiv
BRDiv
LIPO

(c) Weighted Coop Reaching.

0 10 20 30 40 50
Total Timesteps (x960000)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
et

ur
ns

 P
er

 E
pi

so
de

Generalization Performance in Level-based Foraging

Algorithm
L-BRDiv
BRDiv
LIPO

(d) LBF.

Figure 6.4: Generalization performance against previously unseen teammate
types. Figure 6.4a, Figure 6.4c, and Figure 6.4d show that L-BRDiv produced significantly
higher episodic returns when dealing with unknown teammate policies in all environment
except for Cooperative Reaching. Figure 6.4b also show that L-BRDiv obtained episodic
returns close to BRDiv’s when evaluated in the Cooperative Reaching environment.

6.4.4 Ad Hoc Teamwork Experiment Results

Figure 6.4 shows the results of the AHT experiments. We find that L-BRDiv

significantly outperforms other compared methods in the repeated matrix game,

Weighted Cooperative Reaching, and LBF. While BRDiv slightly outperforms L-

BRDiv in Cooperative Reaching, overlapping confidence intervals among the last few

checkpoints suggest that the difference is only marginally significant.

104

π(A) π(B) π(C)
1 1 0 0
2 0 1 0
3 0 0 1

(a) AHT agent action selection probability for policies in MCSest(E) in the Repeated Matrix Game.

(b) MCSest(E) in Coop Reaching & Weighted
Coop Reaching.

(c) AHT agent policies in the MCSest(E) dis-
covered for LBF.

Figure 6.5: MCSest(E) yielded by L-BRDiv. L-BRDiv is capable of estimating all
members of MCS(E) in all environments except LBF. Meanwhile in LBF, it discovers at
least four conventions, which is still more than what LIPO and BRDiv discovered. The
discovery of more MCS(E) results in L-BRDiv producing more robust AHT agents.

L-BRDiv outperforms the compared baselines in all environments except Co-

operative Reaching since these environments all have reward functions that cause

some members of the MCS, πi ∈ MCS(E), to yield high expected returns in cross-

play interactions against a generated teammate policy, π−j ∈ Πtrain, that is not its

intended partner, π−i ∈ Πtrain. Meanwhile, all πi ∈MCS(E) for Cooperative Reaching

have equally low (i.e. zero) returns against the intended partner of other MCS(E)

members. The large cross-play returns disincentivize BRDiv and LIPO’s optimized

objective from discovering πi and π−i during teammate generation. The inability to

discover πi ∈ MCS(E) and π−i will then lead towards diminished robustness since the

trained AHT agent will yield lower returns against teammates whose best-response

policy is πi. In contrast, Cooperative Reaching’s reward structure makes MCS(E) (i.e.

the set of four policies moving towards each distinct corner cell) consist of policies

105

yielding equally low cross-play returns of zero among each other.

Although both BRDiv and LIPO are equipped with a hyperparameter, α > 0,

that can change weights associated with self-play returns maximization and cross-play

returns minimization in their learning objective, it is possible to find simple scenarios

where no feasible α facilitates the discovery of a desirable Πtrain to maximize an

AHT agent’s robustness. Such a desirable Πtrain is characterized by all AHT agent

policies in MCS(E) having at least one teammate policy in ∈ Πtrain whom it is the

best-response policy to. Appendix C.2 shows that the Repeated Matrix Game and

Weighted Cooperative Reaching environment are examples of such scenarios. Even

in environments like LBF where there may exist an α enabling both BRDiv and

LIPO to discover a desirable Πtrain by optimizing their learning objectives, finding an

appropriate α is costly if we factor in the computational resources required to run a

single teammate generation process. Unlike BRDiv and LIPO, L-BRDiv’s inclusion

of Lagrange multipliers as learned parameters enables it to discover desirable Πtrain

in a wider range of environments while reducing the number of hyperparameters that

must be tuned.

Note that L-BRDiv and the baseline methods all successfully discover MCS(E)

in Cooperative Reaching. However, each teammate policy generated by L-BRDiv

and LIPO which has one of the MCS(E) members as its best-response policy ends

up being less optimal than their BRDiv-generated counterparts. These suboptimal

policies require more steps to complete an episode by occasionally moving away from

their destination corner cell. Learning from these suboptimal agents made the AHT

agent less decisive when selecting which corner cell to move towards and finally ends

up producing agents with slightly lower returns.

6.4.5 Behaviour Analysis

The AHT agent policies that L-BRDiv discovers as members of MCSest in all

environments are provided in Figure 6.5a–Figure 6.5c. Unlike the compared baseline

106

methods that only discover two members of MCS(E), results from the Repeated Ma-

trix Game show L-BRDiv is capable of consistently finding all three deterministic poli-

cies that are members of MCS(E). While all compared methods successfully discover

AHT policies in the MCS(E) of Cooperative Reaching, L-BRDiv is the only method

capable of finding all four members of MCS(E) corresponding to movement towards

each corner grid in Weighted Cooperative Reaching. As we show in Appendix C.2,

BRDiv and LIPO’s failure to discover all members of MCS(E) in the Repeated Matrix

Game and Weighted Cooperative Reaching is because discovering MCS(E) does not

optimize their optimized objective for any constant and uniform α. In the LBF envi-

ronment, none of the methods perfectly discover MCS(E) consisting of all six possible

permutations of collecting objects in the environment. However, L-BRDiv is closer to

estimating MCS(E) than the baseline algorithms by discovering four MCS(E) mem-

bers in one seed and five MCS(E) members in the remaining seeds. Compared to

the baseline methods, L-BRDiv’s ability to discover more MCS(E) members eventu-

ally enables it to create more robust AHT agents that can emulate the best-response

policy to a wider range of teammate policies.

6.5 Related Work

This chapter revisits Ad Hoc Teamwork (AHT) through the lens of best re-

sponse diversity, a concept related to, but distinct from, adversarial diversity. We

propose L-BRDiv, a novel method for generating diverse teammate policies in coop-

erative multi-agent systems. Here we provide an overview of the Ad Hoc Teamwork

problem, Diversity in Multi-agent Learning, and Adversarial Diversity.

Ad Hoc Teamwork Existing AHT methods equip an agent with two components

to achieve near-optimal performance when interacting with any unknown teammate

policy (Mirsky et al., 2022). The first is a teammate modeling component that infers

an unknown teammate’s policy via observations gathered from limited interactions

107

with the unknown teammate. The second is an action selection component that

estimates the best-response policy to the inferred teammate policy, which selects

actions that maximize the AHT agent’s returns when collaborating with an unknown

teammate. PLASTIC-Policy (Barrett et al., 2016) is an early example AHT method

that defines an AHT agent policy based on the aforementioned components. Recent

works (Rahman et al., 2021; Zintgraf et al., 2021; Papoudakis et al., 2021; Gu et al.,

2021) implement these two components as neural network models which are trained

to optimize the AHT agent’s returns when dealing with a set of teammate policies

seen during training.

Diversity in Multi-agent Learning Introducing diversity in training partners’

policies is one way to generate robust response policies in multi-agent systems. A

popular line of methods leverages population-based training and frequent checkpoint-

ing (Strouse et al., 2021; Vinyals et al., 2019; Cui et al., 2023c; Bakhtin et al., 2022b).

These methods rely on random seeds to find diverse policies, resulting in no guaran-

tee that the generated policies are sufficiently diverse. Other studies optimize various

types of diversity metrics directly into reinforcement learning objectives or as con-

straints. Xing et al. (2021) introduce a target-entropy regularization to Q-learning

to generate information-theoretically different teammates. MAVEN (Mahajan et al.,

2019) maximizes the mutual information between the trajectories and latent variables

to learn diverse policies for exploration. Lupu et al. (2021) propose generating policies

with different trajectory distributions. Trajectory diversity, however, is not necessar-

ily meaningful for diversifying teammate policies (Charakorn et al., 2023; Rahman

et al., 2023), so we do not consider these methods as baselines in our work. Other work

in single-agent settings introduces Quality Diversity (Mouret and Clune, 2015; Pugh

et al., 2016) or Behavior Diversity (Wu et al., 2023), which rely on domain-specific

heuristics, while our method is domain-independent.

108

Adversarial Diversity Our research is related to work on Adversarial Diver-

sity (Cui et al., 2023a; Charakorn et al., 2023; Rahman et al., 2023). These ap-

proaches generate diverse agents by maximizing self-play scores while minimizing

cross-play scores in a policy pool. Self-play refers to an interaction with a des-

ignated teammate, and cross-play means playing with teammates other than the

designated teammate. These approaches impose strong penalties for high cross-play

returns. As a result, they may not discover teammate policies that produce high

cross-play returns with other policies’ best-response policies. Instead of discovering

meaningfully diverse conventions, they also encourage agents to self-sabotage by de-

liberately undermining their collaboration with any policies other than the policy

encountered during self-play training, as identified from their observed behaviour.

Although our method resembles prior work in the optimization objective, we formu-

late the problem as a constrained optimization problem that allows us to generate a

better set of teammate policies for AHT training. We compare our method against

BRDiv (Rahman et al., 2023) and LIPO (Charakorn et al., 2023). However, we do

not include ADVERSITY (Cui et al., 2023a) as a baseline since it shares the same

objective as LIPO while adding methods to eliminate self-sabotaging behaviour in

Hanabi (Bard et al., 2020), which we do not focus on since self-sabotaging behaviour

can be desirable in other environments where a teammate’s slightest deviation from

a utilized convention yields low rewards.

6.6 Summary, Limitations, and Future Work

In this chapter, we propose that a suitable set of teammate policies for Ad

Hoc Teamwork (AHT) training should enable agents to emulate all policies within

MCS(E)—the minimum set of best-response policies needed to collaborate with any

teammate policy in Π. To generate such teammate policies, we introduce and evaluate

L-BRDiv, a method that formulates a constrained optimization problem and applies

the Lagrangian multiplier technique to jointly approximate MCS(E) and construct

109

diverse teammate policies for AHT training.

Our experimental results demonstrate that L-BRDiv produces more robust

AHT agents than existing teammate generation methods by identifying a broader

subset of MCS(E) while eliminating the need for tuning key hyperparameters. These

contributions directly support Dimension B: Multi-Agent Policy Generaliza-

tion of the core dissertation question.

Despite these promising results, our work has several limitations and opens up

important avenues for future research:

Scaling to More Agents. Currently, L-BRDiv is implemented and evaluated in

two-agent grid-world settings. A valuable extension would be to scale the approach

to more complex environments involving more than two agents, where coordination

requires diverse joint policies and best responses.

Alternative Prioritization Criteria. The prioritization mechanism in our cur-

rent approach optimizes for high self-play rewards. Future work could explore alterna-

tive objectives beyond Equation 6.9, particularly those that discourage the discovery

of self-sabotaging or brittle policies (Cui et al., 2023a), enabling a more nuanced and

effective approximation of MCS(E) under limited policy budgets.

Extension to General-Sum Settings. While this work focuses on fully coopera-

tive scenarios, the notion of minimum coverage sets naturally extends to general-sum

games. Expanding L-BRDiv to such settings could lead to more adaptable and robust

agents. Preliminary results suggest that simply activating constraint Equation 6.11

helps uncover diverse policies even in general-sum environments, underscoring the

method’s broader applicability.

We now turn to the next topic: how multiple agents can collaborate and

coordinate effectively with human proxies to address a real-world challenge at scale.

110

Part IV

Learning with Human Proxies

111

Chapter 7

Collaborating with Human Proxies

Collaborating effectively with humans is a critical component of AI for social good.

While Chapter 4 explored how autonomous agents can learn to understand and gen-

erate human language, this chapter focuses on scenarios in which humans and agents

coexist in the same environment, and examines how agents can learn to coordinate

with human behaviors. In particular, we study the challenge of mixed autonomy in

autonomous driving—where both human-driven and autonomous vehicles (AVs) share

the road—and investigate how AVs can collaborate with human drivers to improve

overall traffic efficiency and safety at a system level.

A well-known phenomenon in human driving is the emergence of suboptimal

behaviors such as stop-and-go waves, which can lead to phantom congestion and

reduced overall efficiency. Prior work by Vinitsky et al. (2018) demonstrated that

introducing a small number of autonomous vehicles (AVs), controlled by reinforcement

learning policies under centralized coordination, can dampen these oscillations and

improve traffic flow. These studies modeled human drivers using proxy agents and

showed that, under specific conditions, AVs have the potential to alleviate congestion

and enhance system performance.

However, these earlier approaches assume a static set of agents and do not

generalize well to open collaboration systems , where agents dynamically enter and

112

leave the network. In such settings, prior methods can fail to sustain collaboration

and are even vulnerable to manipulation by autonomous agents.

In this chapter, we address these limitations by developing a framework that

enables AVs to collaborate with human proxies in open traffic systems. We propose

a distributed training scheme along with a cooperative-competitive reward design

tailored for an open traffic environment (Section 7.2). To study the scalability of

the method in larger-scale systems, we experiment with a modular learning method

that generalizes to larger and more complex traffic scenarios (Section 7.2.3). Our

experimental results demonstrate that the learned policy consistently outperforms

human driving baselines, illustrating the potential for scalable and robust AV-human

collaboration in realistic transportation systems (Section 7.3).

This work contributes to Dimension C: Collaborating with Human-Like

Agents by showcasing how AVs, through reinforcement learning and principled policy

design, can adapt to human behavior and enhance traffic efficiency in mixed-autonomy

settings.

The research presented in this chapter was published in the Proceedings of

the 20th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2021). The author led the design and implementation of the experiments in

close collaboration with William Macke and Aastha Goyal, who also contributed to

the experimental work. Harel Yedidsion, Daniel Urieli, and Peter Stone were involved

throughout the project, providing valuable feedback and collaborative insights.

7.1 Problem Formulation

We start by defining the traffic congestion reduction problem, its MDP (Section 2.1)

formulation, and the traffic simulation environment we use.

Traffic congestion reduction problem definition. Given an open road net-

work (as defined in the introduction) with mixed autonomy traffic consisting of both

113

human-driven vehicles and AVs, maximize the network’s traffic efficiency by con-

trolling the AV accelerations. Traffic Efficiency is measured in terms of outflow –

the number of vehicles per hour exiting the network. A solution to the congestion

reduction problem is a multiagent driving policy which maps the AV states to accel-

eration actions. We make the following assumptions: (i) Agents (AVs) are altruistic

and have a common goal of reducing system congestion and (ii) Human drivers are

self-interested and try to improve their own travel time.

MDP Formulation The congestion reduction problems we address in this chapter

can be modeled as a discrete-time, finite-horizon Markov Decision Process (MDP)

(Section 2.1). A driving policy is a probability distribution πθ : S × A → [0, 1]

parameterized by θ that stochastically maps states to driving actions.

To find a solution policy, we train an RL agent to optimize a driving policy

to maximize the expected return Eτ

[∑T
t=0R (St, At)

]
, where τ := (S0, A0, S1, A1 . . .)

denotes a trajectory, S0 ∼ ρ0, At ∼ πθ (·|St), St+1 ∼ P (·|St, At). In this chapter, S
is a set of AV observations, A is a set of acceleration actions, P is computed by the

simulator, and R denotes the reward function. We discuss several implementations

for the reward function in Section 7.2.1

Simulation Environment We interface to the SUMO traffic simulator (Krajzewicz

et al., 2012) using UC Berkeley’s Flow software (Kheterpal et al., 2018). Flow provides

OpenAI Gym (Brockman et al., 2016b) environments as wrappers around SUMO for

easy interaction with various RL algorithm implementations. The simulator takes

in maps of road structures, and simulates vehicle movements using accepted human

driving models (Treiber and Kesting, 2017) and definitions of inflows, i.e., the location

and rate of vehicles entering the network. The simulated vehicles follow safety and

acceleration limits enforced by the simulator. A vehicle’s leader and follower are the

closest vehicles in front of and behind it (if they exist). We note that the actual inflow

rate frequently differs from the requested one, for instance, in cases where vehicles

114

cannot enter the road network due to congestion. This mechanism opens an option

for a vehicle to moderate the inflow by slowing down intentionally immediately after

joining the network. The inability to guarantee exact inflows is the reason that the

average-speed-based metric is not a valid congestion measure in open networks, as

discussed in Section 7.2.1.

7.2 Methodology

In this section, we describe the evaluation metrics we use and the structure

of the centralized and distributed multi-agent driving policies we train using RL. We

discuss in detail the considerations that go into choosing appropriate Metrics and

Rewards. Metrics are used for measuring the performance of a given policy, but are

not always effective as RL rewards. In such cases, rewards different from the metric

may be used as a performance measure for the RL agents.

7.2.1 Evaluation Metrics

In the Flow benchmark (Vinitsky et al., 2018), the performance of the system

is evaluated using time-average sample-average speed over the episode, defined by

Equation 7.1

Time-Average Sample-Average Speed ≜
∑T

t=1

∑nt

i=1 vi,t/nt

T
(7.1)

where nt is a time-dependent variable representing the number of vehicles in the

traffic network at time t, vi,t is the instantaneous speed of vehicle i at time t, and T

is the episode length. In an ideal scenario with constant inflows, there are multiple

metrics that would all lead to the same ordering of policies: maximizing average speed,

maximizing network outflow, and minimizing average time delay (Dresner, 2008). In

open road networks, a good policy should optimize the network outflow by maximizing

the number of vehicles that pass through the network in a fixed time interval, however

policies that achieve high average speed might do so through manipulations that

115

reduce inflows and outflows. For instance, one way to manipulate the average-speed

metric is to block the incoming vehicles from entering the network until there is enough

space for existing vehicles to accelerate to the maximum speed, thus maximizing the

average-speed metric by compromising inflow and outflow. The average-speed metric

is vulnerable because it ignores the (unmeasured) speeds of vehicles that haven’t

entered the simulated road network. The outflow metric on the other hand is robust

to this form of manipulation since delaying vehicles from entering the network is

eventually penalized through reduced outflow. Therefore, we propose Outflow as a

performance metric in open networks as defined in Equation 7.2

Outflow ≜
∑T

t Ot

T
(7.2)

where T is the episode length and Ot represents the number of vehicles that leave the

network during timestep t.

The reduction of inflows and outflows as a means of improving average speed is

demonstrated in Table 7.1, which compares the results of using three reward functions

— the original Flow reward, the average-speed reward, and the outflow reward — on

Simple Merge defined in Section 7.4.1.

7.2.2 Centralized Multiagent Driving Policy

Our centralized driving policies are built on top of the ones used in previous

work (Vinitsky et al., 2018; Kreidieh et al., 2018), where a centralized RL agent

trained using the Proximal Policy Optimization (PPO) algorithm (Schulman et al.,

2017), controls a predefined fixed number of agents, NAV as illustrated in Figure 7.1.

AVs are added to the list of controlled vehicles according to a FIFO rule based on

when they entered the network. Below, we discuss the state space and reward signal

used for the centralized approach.

State Similarly to past work (Kreidieh et al., 2018), at time-step t the centralized

driving policy accepts a state observation St which is a concatenation of 5-tuples

116

Figure 7.1: Centralized neural network policy, where local states for vehicles are
concatenated to form a global state. The state is passed through a series of hidden layers,
resulting in an output vector of accelerations of controlled AVs.

Figure 7.2: Simple Merge network of length 700 m and Inflow rate 2000 veh/hr with an
on-ramp of inflow rate 200 veh/h. Perturbations caused by merging vehicles lead to stop-go
waves congestion (Kreidieh et al., 2018).

117

representing local AV states with the following values:

1. Normalized speed of the AVi, vi
2. Normalized speed of the leader of AVi, vLi
3. Normalized headway between AVi and its leader, hLi
4. Normalized speed of the follower of AVi, vFi
5. Normalized headway between AVi and its follower, hFi

The speed values are normalized by the max possible speed Vmax, and the headway

values are normalized by a constant representing the maximum possible headway,

hmax. Suppose the maximum number of AVs controlled by the centralized policy is

NAV , then the state feature St is a vector of length 5NAV , and is padded with zeros

when the number of AVs in the network is smaller than NAV . Formally, the state of

AVi at time t, Si,t is defined in Equation 7.3, and the concatenated state of all the

AVs at time t, St is defined in Equation 7.4.

Si,t = [
vi,t
Vmax

,
vLi,t
Vmax

,
hLi,t
hmax

,
vFi,t
Vmax

,
hFi,t
hmax

] (7.3)

St = [S1, S2,SNAV
] (7.4)

Reward There are several possible objectives to optimize for in open networks,

such as maximizing network outflow, or minimizing the maximum time delay of any

vehicle to prevent starvation. In this chapter, we focus on maximizing the efficiency of

a network in the form of average outflows. There are three reward functions considered

in our experiments.

Original Flow Reward (Vinitsky et al., 2018) The reward in the Flow bench-

mark is composed of ℓ2-norm distance to a desired velocity and a small-headway

penalization term. This reward encourages every vehicle to travel as close as it can

118

to the desired speed every time step while maintaining a large headway.

rt = max(∥Vd1n∥2 − ∥Vd − v∥2, 0)/∥Vd1n∥2 − α
∑
i∈AV

max(hmax − hi, 0) (7.5)

where v is a speed vector of all the vehicles in the network, Vd is the desired speed

scalar, 1n is a 1 vector with n elements, where n is the total number of vehicles in

the network, α is an adjustable constant, hi is the headway between the ith AV and

its leader, and hmax is a constant of expected headway.

Average Speed Reward We define an instantaneous average speed reward as

rt =

∑n
i=1 vi

nVmax

(7.6)

where n is the current number of all vehicles in the traffic network, and Vmax is

the maximum speed allowed on every lane. This reward is provided every time step.

Summing it over the entire episode and then dividing the sum by the episode’s horizon

T gives the value of average speed (Equation 7.1) of the episode.

Outflow Reward The reward for instantaneous outflow is

rt = Ot (7.7)

where Ot is the number of vehicles that leave the observed area of the traffic network

through any lane during the tth time step. We note that the sum of this reward over

the simulation will always be proportional to the Outflow metric (Equation 7.2) by

a factor of 1/T , assuming the simulation occurs over a fixed period of time. Thus

optimizing this reward is equivalent to optimizing the Outflow metric.

7.2.3 Modular Transfer Learning Approach

Scaling up to the I-696 Merge scenario results in an order of magnitude more

vehicles (hundreds instead of tens). Training RL agents in this scenario is challenging

119

for at least three reasons. First, the state and action space grow exponentially with

the number of controlled vehicles when using a centralized approach. Specifically,

the combined action space of the system is, |A| = |Ai|NAV where |Ai| is the size of

the action space of a single AV, and the size of the combined state space is |S| =

|Si|NAV where |Si| is the size of the state space of a single AV. Second, while the

centralized agent’s most important actions are those that are near the merge point,

the congestion-related rewards (Section 7.2.2) are calculated based on all vehicles in

the network, most of which are more impacted by their own actions than by the

centralized controller, so that the agent’s reward is very noisy. Third, there is a large

delay in rewards due to the delay in the effect of an AV action on the system’s average

speed and outflow. Therefore, in the I-696 scenario we use transfer reinforcement

learning and a modular approach.

Method We create a window surrounding the junction so that the length of each

road segment is comparable to a corresponding segment in a smaller network we

trained on. We then take a policy that was trained in the small network, and apply

it to the AVs inside the window, while outside of the window AVs act like human

drivers. We refer to this approach as the Zero-Shot Transfer approach, and compare

it to training from scratch within this same window, referred to here as Train from

scratch (Window).

State and Reward The states and rewards employed in the modular approach are

the same as in the centralized method.

7.2.4 Distributed Multiagent Driving Policy

In our distributed setting, autonomous agents share the same policy which is

executed locally as Figure 7.3 shows. Each agent only has access to its local observa-

tions, and acts independently from other agents. In the training process, each agent

120

receives its own reward, and the experiences of all agents are used to train the same

policy.

Figure 7.3: Decentralized policy, where each vehicle only has access to local observa-
tions. The local observation is passed through hidden layers, resulting in the final scalar
output of the AV acceleration. This same policy is applied to every AV in the network, each
with its own local observations.

State In the distributed setting, AVs rely only on their own sensed information and

lack the information of the entire network that the central policy has. To mitigate

this lack of information, we include both the original state features for a single AV of

the centralized method as well as several additional features which can be obtained

using the AV’s sensors, including: distance from agent to the next merging point; the

speed of the next merging vehicle and its distance to the merge junction. With this

added information the state becomes:

Si,t = [
vi,t
Vmax

,
vLi,t
Vmax

,
hLi,t
hmax

,
vFi,t
Vmax

,
hFi,t
hmax

,

dnext
dmax

,
vmerge

Vmax

,
dmerge,next

dmax

]

(7.8)

where d measures the length along the predefined route in m, v denotes speed in

m/s, h denotes headway in m, Vmax is the max possible speed, dmax is a constant

121

that evaluates the length from the network entry to the merging junction, and hmax

is a constant representing the max possible headway. In particular, vi, vLi , vFi denotes

speed of the ith AV at time step t, its nearest leader’s speed, and its nearest follower’s

speed respectively; hLi and hFi denote headway between the ith AV and its leader,

and the headway between the ith AV and its follower; dnext represents the distance

between the ith AV and the next junction on its route, and dmerge,next is the minimal

distance of all vehicles on a different edges to the junction. Since the policy is shared

among all agents in the traffic network, the number of AVs can vary among different

environments, and the theoretical maximum value that i can take is the maximal

number of vehicles allowed in the observed traffic network.

Reward The reward design in the distributed setting is different from that in the

centralized setting, since the agent only gets rewards while it is in the simulation.

The Outflow reward is only affected by the AV’s actions after the AV had exited the

simulation, so the agent does not get to observe its own rewards. The Average Speed

reward does not encourage the agents to exit the simulation, since higher rewards

(speeds) result in spending less time in the simulation and therefore lower cumulative

rewards. As a result the agents may reduce their speed without incurring a substantial

reduction in their return. A possible alternative is to penalize an agent for every time

step it stays in the network (i.e. for agent i, the reward at time t would be ri,t = −0.1).
We refer to this as selfish reward. We found in preliminary experiments that if agents

are only rewarded according to individual time-delay, their learned policy is inferior to

a policy trained using a combination of selfish and collaborative reward in distributed

shared policy training.

We use η1 to denote the weighting of the individual time-delay penalty (selfish

component), and η2 to denote the weighting of the system average speed (collaborative

component), where η1 + η2 = 1, η1 ≥ 0, η2 ≥ 0.

The effectiveness of mixing reward in this way is consistent with previous work

on multiagent reward mixing (Durugkar et al., 2020). Our preliminary experiments

122

also show that a bonus for each agent upon leaving the traffic network helps, so the

final reward used in our distributed approach is defined as:

ri,t = (1− 1done)(−η1 + η2 ×
∑n

j=1 vj

nVmax

) + 1done ·Bonus (7.9)

Where 1done is an indicator function that takes value 1 at the time the agent vehicle

leaves the network, and 0 when the vehicle is still in the network. We perform

sensitivity analysis on the values of coefficients of the reward function in Table 7.4

7.3 Experiment Setup

In this section we describe the properties of the two types of road networks

that we use in our empirical evaluation, the Simple Merge, and the I-696 highway. We

also describe the characteristics of the two types of vehicles in the network, human

driven vehicles, and AVs.

We aim to answer the following research questions through the empirical eval-

uations:

Q1 What is the best evaluation metric for the traffic congestion reduction in the

open road network? (Outflow.)

Q2 Does the distributed learning method reduce traffic congestion more effectively

with better state representations? (Yes.)

Q3 Does the modular transfer approach scale to the larger scenario? (Yes.)

Q4 What is the best mixed reward for the distributed learning agents? (A mixture

of a system reward and individual reward can be found through grid search.)

7.3.1 Traffic Scenario 1 - The Simple Merge

Our Simple Merge experiments are based on the Flow benchmark (Vinitsky

et al., 2018). The road network consists of a main highway of length 600m before

123

the merge and a merging lane of 200m. After merging, the vehicles still need to

travel an additional 100m. The junction controller is a "priority" controller where

both incoming edges have equal priority. This controller is the same as in previous

benchmarks (Vinitsky et al., 2018). If two vehicles arrive at the junction at the same

time with equal priority, the one with the lower speed will yield to the vehicle with the

higher speed. The main highway has an inflow of 2000 vehicles per hour consisting

of 90% humans and 10% AVs. The merging lane has an inflow of 200 vehicles per

hour, made up entirely of human drivers. This setup is compatible with real highway

capacity levels of 2250 vehicles/hour/lane (Laufer, 2007). For both inflows, vehicles

enter the traffic network according to the predefined inflow rate with some small

stochastic variance in the arrival times. In the mixed autonomy traffic flow, the AVs

are equally spaced among human vehicles. In the centralized policy the maximum

number of controlled AVs, NAV , is 5. In the distributed policy there is no limit on

the number of controlled AVs.

7.3.2 Traffic Scenario 2 - The I-696 Merge

The I-696 network has the same shape as the real-world Interstate 696 highway

in the US, which is a much larger network than the simple merge. In our experiments,

we simplified the I-696 network to have a single rather than multiple lanes, a main

road, and a single merging road as highlighted in Figure 7.4. We refer to this part

of the network as the I-696 Merge. The I-696 Merge is much longer than the Simple

Merge, which makes it challenging for existing methods to learn effective driving

policies. The highway length before the merge is 3131m, the merging edge length is

1878.56m, and after merging the vehicle still needs to travel 5077.7m. The defined

traffic inflows are the same as in the Simple Merge.

124

Figure 7.4: I-696 Network

7.3.3 Human-Proxy Vehicles

In all scenarios, the behavior of human-driven vehicles is modeled using the

Intelligent Driver Model (IDM) (Treiber et al., 2000), which seeks to maintain a

target speed while ensuring a minimum time gap of one second from the leading

vehicle. This model has been widely adopted to simulate human driving behavior in

traffic studies.

7.3.4 Autonomous Vehicles (AV)

Autonomous vehicles are only included in the main highway inflow with a 10%

penetration rate and equal spacing. There are at most 5 controlled AVs in centralized

Simple Merge, 30 in the centralized I-696 Merge, and any number in the distributed

Simple Merge.

125

7.3.5 Training Details

All experiments are trained with the same set of parameters using the Proximal

Policy Optimization (PPO) algorithm. Both tasks were trained in an episodic manner

with a horizon of 2000 time steps of length 0.5 seconds. All results are obtained from

SUMO 1.6.0 and Ray 1.0.1. 1

7.4 Empirical Results

In all our experiments, for each configuration we execute three policy learning

runs, select the learned policy with the highest return, and evaluate its performance

in 100 simulations using a fixed set of 100 random seeds (which affect the arrival

times of the vehicles entering the network). We report the mean values of relevant

metrics accompanied with their 95% confidence interval error bounds. 2

7.4.1 Comparison of Reward Functions

Table 7.1 shows the results of training the centralized policy described in

Section 7.2.2 in the Simple Merge scenario described in Section 7.3.1, using each of

the three reward functions described in Section 7.2.2 (along with human driven traffic

as a baseline).

Table 7.1: Performance of different reward functions on Simple Merge

Reward
Average Outflow

(vehs/hr)
Average Inflow

(vehs/hr)
Average Speed

(m/s)

Human 1558.12±2.99 1725.48±2.89 7.27± 0.15

Original Flow Reward 1724.55±6.98 1769.36±6.60 18.95±0.19

Average Speed Reward 1379.45±2.99 1408.46±3.28 19.34±0.02

Outflow Reward 1804.21±7.17 1864.55±7.24 16.21±0.08

1Our code base is publicly available here: https://github.com/cuijiaxun/MITC-Project
2Videos can be found here: https://www.cs.utexas.edu/~aim/flow.html

126

https://github.com/cuijiaxun/MITC-Project
 https://www.cs.utexas.edu/~aim/flow.html

All reward functions — the original Flow reward, the average-speed reward,

and the outflow reward — result in improved average speed over the human baseline,

where the average speed reward results in the highest average speed in the network.

However, we see that this improvement comes at the cost of overall reduced network

throughput, even when compared with the human baseline. The Average Speed

reward produced network inflows and outflows that were significantly lower than the

human baseline (an independent T-Test yields p-values < 0.001 for both metrics).

By contrast, both the Flow reward function and the outflow reward function are

able to increase all 3 metrics compared to the human baseline; however, the Outflow

reward function still outperforms the Flow reward in terms of outflow and inflow by

a statistically significant margin. An independent T-Test yields p-values < 0.001 for

both inflows and outflows.

7.4.2 Modular Transfer Learning

In this section we compare the performance of three RL approaches and

human-driven traffic on the I-696 Merge scenario (Section 7.3.2):

• Zero-Shot Transfer approach (Section 7.2.3)

• Train from scratch (Window) approach (Section 7.2.3)

• Train from scratch (NAV =30) approach — trained on the entire I-696 Merge with

a maximal number of controlled AV, NAV = 30, and applied to up to 30 AVs in

I-696 Merge.

All three approaches were trained using two reward functions: the Flow reward, and

the Outflow reward. Table 7.2 demonstrates that the Zero-Shot Transfer approach

integrated with the outflow reward produces the best outflow results: significantly

better than human performance. The next best approach is the Train From Scratch in

a window approach, in combination with the Outflow reward. However the difference

between these top two approaches is not statistically significant with p-value=0.141

127

in an independent T-Test. The top two approaches also have better average speed

than the human baseline and comparable inflows. The Train from scratch (NAV =30)

approach performs worse than the human baseline under both reward functions, as

it was unable to address the three challenges described in Section 7.2.3. The original

Table 7.2: Evaluation results of transferring a policy from Simple Merge to I-696 Merge

Experiment Reward Average Outflow
(vehs/hr)

Average Inflow
(vehs/hr)

Average Speed
(m/s)

Human None 936.90±5.96 2184.91±0.29 16.27±0.12

Train From Scratch (NAV =30) Outflow 366.98±1.91 561.60±3.12 19.57±0.27
Flow reward 638.06±10.99 1165.06±10.22 14.95±0.12

Train From Scratch (Window) Outflow 1012.64±9.23 2178.76±2.81 16.99±0.13
Flow reward 923.29±5.79 2181.17±1.92 15.98±0.10

Zero-Shot Transfer (Window) Outflow 1017.32±10.49 2170.55±4.61 17.05±0.16
Flow reward 928.00±6.06 2181.53±1.67 16.09± 0.11

Flow reward never beats the human baseline in terms of outflows, in any of the

training approaches.

Note that outflows in I-696 are approximately half of those in Simple Merge

due to the length of I-696, since vehicles take a long time to reach the end of the

simulated highway. Since the simulation on I-696 is much slower than on Simple

Merge, training on I-696 takes approximately 5 times longer for the same number of

iterations than training on Simple Merge.

7.4.3 Distributed Setting

In this section we perform feature selection on the distributed approach’s state

representation, and conduct sensitivity analysis on the hyper-parameters of the dis-

tributed reward function.

Distributed State Feature Augmentation The centralized agent receives local

observations sent from all autonomous vehicles, which can provide indirect infor-

mation indicating the traffic situation at different locations over the network. For

128

Table 7.3: Evaluation results of distributed method using different features

Augmentation Episodic Return Average Outflow
(vehs/hr)

Average Inflow
(vehs/hr)

Average Speed
(m/s)

Human Not Applicable 1558.12±2.99 1725.48±2.89 7.27± 0.15

No Augmentation 458.09±9.65 1610.68±10.56 1658.45±10.64 16.02±0.17

Full Augmentation 476.81±14.47 1791.07±6.60 1850.72±6.76 15.91±0.05

Dist 447.64±13.26 1663.49±10.95 1725.55±9.94 14.57±0.31

Dist+MergeInfo 444.95±13.33 1674.72±9.72 1741.90±7.76 14.40±0.22

MergeInfo 434.43±8.21 1600.67±9.28 1657.01±9.34 15.04±0.14

Congestion+MergeInfo 456.05±13.18 1666.55±14.97 1726.24±14.99 14.92±0.22

Congestion+Dist 425.87±4.17 1686.24±6.49 1755.50±7.39 13.53±0.06

example, the speed of first AV may represent the congestion level ahead of the second

AV, so the second AV can adjust its behavior according to this. In our distributed

setting, however, no information is communicated between AVs, so the agents have

to make decisions solely based on local information.

One intuition is that AVs can make better decisions if they are provided with

system-level information. The following environmental information is hypothesized to

be useful for the distributed agents to learn a policy that can improve traffic efficiency.

For simplicity, we will use the abbreviations in parentheses for each feature for future

reference.

1. Average speed of vehicles between the AV and the next junction (Congestion)

2. Distance from the AV to the next junction (Dist)

3. Distance from the first vehicle that is going to merge to the junction and the

speed of this merging vehicle (MergeInfo)

We show in Table 7.3 that if the agents totally rely on the speed and head-

way information of itself, its leader, and its follower without any extra information

(referred to as “No Augmentation”), they can achieve slightly better results than

129

the human baseline, but additional state information further improves the perfor-

mance. The experiments were conducted using a “0.1-Collaborative reward” (the

reward defined in Equation 7.9 with η1 = 0.9, η2 = 0.1) and a bonus for completion

(ri,done = +20). We noticed that when including the congestion feature, the learn-

ing process became less stable, with average return decreasing later in the training

process. We conjecture that this happens because the observed values of this feature

are highly dependent on the AVs’ current policy. For instance, during early training,

the agents may experience mainly high congestion values, while once the policy im-

proves, it sees mainly low congestion values. Therefore including this feature adds

an additional non-stationary element to the learning process. Table 7.3 shows how

state augmentation affects the training process. The model with the full set of state

features (Dist, MergeInfo, and Congestion) performed the best.

Table 7.4: Experiment results of different reward function parameters of the distributed
method on Simple Merge

η1, η2, ri,done
Average Outflow

(vehs/hr)
Average Inflow

(vehs/hr)
Average Speed

(m/s)

Human 1558.12±2.99 1725.48±2.89 7.27± 0.15

η1 = 1, η2 = 0,+0 1749.78±7.78 1807.99±7.93 16.01±0.06

η1 = 1, η2 = 0,+20 1771.74±5.63 1831.75±5.98 15.91±0.04

η1 = 0.9, η2 = 0.1,+20 1791.07±6.60 1850.72±6.76 15.91±0.05

η1 = 0.9, η2 = 0.1,+0 1622.34±6.74 1685.02±6.86 13.99±0.06

η1 = 0.8, η2 = 0.2,+20 1796.76±6.78 1856.70±7.07 16.03±0.05

η1 = 0.7, η2 = 0.3,+20 1740.64±5.14 1801.58±5.30 15.38±0.04

η1 = 0.5, η2 = 0.5,+20 1750.46±6.51 1809.83±6.72 15.59±0.23

η1 = 0, η2 = 1,+20 1744.96±6.69 1808.28±7.07 13.11±1.09

η1 = 0, η2 = 1,+0 271.44±6.29 566.64±3.96 1.54±0.02

Distributed Reward - Parameter tuning Next, we compare the resulting per-

formance when learning policies with the distributed reward defined in Equation 7.9,

130

parameterized with different values of η1 (selfish), η2 (collaborative) and Bonus (com-

pletion).

In Table 7.4 we can see that when the reward is purely collaborative (η1 = 0,

η2 = 1,+0), it does not encourage agents to leave the system, since the outflow of

271.44 is about 17% of the human baseline outflow. In fact, the longer an agent stays

in the system, the more reward it can get at the early training stage. As a result,

the policy optimization can become trapped at a local optimum. Visualization of the

resulting policy shows that at some point an AV stops and lets the merging vehicles

travel at full speed so as to gain more speed-based reward.

We see that by either moving to a fully selfish reward, or adding an exit

bonus reward ri,done = 20 when the ith agent has exited the simulation, the outflow

improves by about 12% compared with the human baseline (an outflow of 1749.78

or 1744.96), and by using both fully selfish reward and the exit bonus the outflow

improves by additional 1.5% (an outflow of 1771.74). An additional improvement

of 1.3% − 1.6% is achieved by mixing a small fraction of global reward with a large

fraction of selfish reward, as well as an exit bonus (an outflow of 1791.07 and 1796.76

for the 0.2- and 0.1-collaborative policies). We note, however, that due to the high

variance in performance during training, the RL policies didn’t always achieve these

results during the training process. Generally, when the collaboration weight η2 is less

than 0.5 and there is an exit bonus, the trained policies can all increase the average

speed and outflow with respect to the human baseline, without significantly lowering

the inflow.

The distributed policy outperforms the human baseline, but achieves slightly

lower outflows than the centralized one. The difference between the top performing

distributed policy and the centralized one is not statistically significant.

131

7.5 Related Work

Traffic congestion has long been an active research area (Downs, 2000). A

common form of traffic jam in freeways is stop-and-go waves, which were shown in

field experiments to emerge when density exceeds a critical value, even with no ap-

parent bottleneck (Sugiyama et al., 2008). In recent field experiments, hand-designed

controllers dissipated such waves and improved traffic flow (Stern et al., 2018).

RL for Mixed Autonomy. The recent industry-wide development of autonomous

and automated vehicles (AVs) has led to a surge of interest in harnessing AVs to reduce

traffic congestion. On the theoretical side, there have been efforts to formalize and

analyze the foundations for AVs impacting traffic systems (Wu et al., 2018). On the

applied side, large-scale traffic simulators have been adopted into a newly developed

experimental framework called Flow (Wu et al., 2017; Vinitsky et al., 2018), which we

use in this chapter. Using Flow, past research showed that Reinforcement Learning

(RL) (Sutton and Barto, 2018) can learn an effective centralized multiagent driving

policy, which simultaneously senses and controls all AVs, and improves the average

traffic speed over human-driven traffic, implemented with accepted human driving

models (Treiber and Kesting, 2017). However, we show that the average-speed metric

is manipulable by an RL agent and might not accurately reflect the network’s traffic

efficiency. Instead, we propose using an alternative metric.

Transfer Learning in RL. Since using RL to learn controllers in realistic simu-

lated or real-world setups could be impractically slow, some research looked at using

transfer learning (Taylor and Stone, 2009) to expedite learning, by transferring from

a simulated ring to a simulated simple merge scenario (Kreidieh et al., 2018), and

from a simulated to a scaled city (Jang et al., 2019). Our transfer learning approach

is different in the modular way it reuses state representation, which makes it more

scalable. In the ring-to-merge transfer, the authors handled the different source and

132

target scenario structure and size by assuming a maximum number of AVs in the

road network, duplicating the ring state representation by this number, and using

0-padding if the actual number of AVs was smaller. In contrast, in our transfer ap-

proach the policy does not directly control more AVs than it was trained for. Instead,

it is deployed only in a specific key location in the scenario, and its state representa-

tion remains the same even though the scenario has a different geometry and a larger

number of participants. In addition, the policy transferred from ring to merge did not

surpass the performance of a policy trained from scratch, while using our approach

the transferred policy did.

7.6 Summary, Limitations, and Future Work

In this chapter, we explore how autonomous agents can effectively coordinate

with human proxies in open traffic scenarios. We demonstrate that the commonly

used metric—average speed—is insufficient for evaluating traffic efficiency in open

networks, as it can be artificially inflated by agents manipulating vehicle inflow. To

address this limitation, we propose using network outflows as a more robust and

manipulation-resistant metric. Using this metric as a reward function, our RL algo-

rithm produces a driving policy that outperforms policies trained with prior reward

functions, achieving higher throughput and average speed in small open network sce-

narios.

Building on this insight, we address the challenge of improving traffic flow

in a large-scale network that contains a chain of merging intersections (specifically,

Michigan’s I-696 highway). We develop a modular transfer learning framework that

transfers policies trained in smaller networks to local windows around junctions in the

larger network. This modular approach yields superior outflows compared to both

human-driven baselines and policies trained from scratch on the full network, while

reducing training time by up to 80%.

Finally, we show that a distributed multi-agent RL policy—relying only on

133

local observations from onboard vehicle sensors—can improve traffic efficiency in a

small open network. This distributed setting offers a more practical alternative to

centralized methods that require global coordination among all autonomous vehicles.

Empirical experiments in this chapter contribute to the Dimension C: Collabo-

rating with Human-Like Agents.

Several limitations of this work point to promising directions that emerge from

this work.

Human Proxies vs. Real Human Behavior. In this work, human driving be-

havior is modeled using proxy agents governed by the Intelligent Driver Model (IDM).

While IDM offers a widely accepted approximation, it does not fully capture the vari-

ability, unpredictability, and strategic nuances of real human drivers. As a result, the

learned policies may not generalize well to environments populated by actual human

drivers. A promising future direction is to incorporate real-world human driving data

into the simulation loop—either by learning behavior models from datasets such as

NGSIM or Waymo Open Dataset, or by directly integrating human demonstrations.

Doing so could improve the fidelity of the simulation and provide a more reliable

benchmark for evaluating the robustness and adaptability of autonomous driving

policies.

Sim-to-Real Transfer. All experiments in this study were conducted in simu-

lated environments. While simulation provides a safe and controlled platform for

developing and evaluating RL policies, deploying these policies in real-world traffic

systems poses significant challenges. These include sensor noise, real-time inference

constraints, and unexpected behaviors from human drivers. Future work could ex-

plore sim-to-real transfer methods, such as domain randomization, policy distillation,

or fine-tuning with real-world data, to bridge the gap between simulation and deploy-

ment. Three years after the publication of this work, Lichtlé et al. (2024) conducted

field experiments using the same simulator and demonstrated that optimizing human

134

proxies with real human driving data could improve real-world performance of the

learned policies.

Broader Scenario Coverage. This work focuses on a small number of open-

network traffic scenarios, including a scaled version of the I-696 highway. While these

setups provide valuable insights, they do not capture the full diversity of real-world

road structures and traffic patterns. Future research could expand the evaluation to

include a wider variety of road topologies, such as urban intersections, arterial roads,

roundabouts, and mixed-use streets and reward designs. Additionally, varying the

density of human and autonomous vehicles, simulating different weather and visi-

bility conditions, or introducing multi-modal traffic (e.g., pedestrians and bicycles)

could further stress-test the robustness of the proposed methods.

This chapter presents the final part of the dissertation’s technical contribu-

tions. Next, we will summarize the work, situate it within the broader context of

related research, and discuss ongoing and future extensions of the contributions pre-

sented.

135

Part V

Related and Future Work

136

Chapter 8

Related Work

This chapter presents a comprehensive review of related work that underpins the con-

tributions of this dissertation. While individual chapters provide contextual related

work relevant to their specific contributions, this chapter situates the overall contri-

butions within the broader research landscape and highlights their connections to

subsequent developments in the field.

The remainder of this chapter reviews prior research in multi-agent policy gen-

eralization, inter-agent communication, and learning in mixed-autonomy settings. We

focus on how these topics support our contributions in multi-agent learning and coor-

dination, and we highlight representative works that shaped the field. Specifically, we

discuss methods for multi-agent policy generalization (including diverse policy

generation, population-based training, Empirical Game-Theoretic Analysis (EGTA),

and Ad Hoc Teamwork (AHT)), advances in multi-agent communication (rang-

ing from vehicle-to-vehicle signaling to natural language dialog), and approaches to

mixed-autonomy policy learning (where AI agents learn to collaborate with or

amidst human-controlled agents). We then survey two application domains rel-

evant to this dissertation: (a) the cache timing attack problem (a security domain

illustrating adversarial multi-agent interactions) and (b) large language model (LLM)

based agents for autonomous driving (illustrating cutting-edge multi-agent coordina-

tion with AI-driven vehicles).

137

8.1 Multi-Agent Policy Generalization

Multi-agent policy generalization research addresses how an agent can learn

strategies that are robust across diverse partners, opponents, and scenarios. A core

challenge is that policies trained against a fixed set of co-players often overfit and fail

against novel behaviors. To mitigate this issue, researchers have explored diverse pol-

icy generation and population-based training. In such approaches, instead of training

a single set of policies in isolation, a population of agents co-evolves, exposing each

agent to a wide variety of behaviors. This idea underpinned successes like AlphaS-

tar’s league training in StarCraft (Vinyals et al., 2019) and the Policy-Space Response

Oracles (PSRO) framework (Lanctot et al., 2017). By maintaining a growing pool

of policies and iteratively adding best responses, PSRO offers a principled way to

explore strategy space and approximate game-theoretic solutions. Population-based

training (PBT) yields a broader range of experiences by encouraging diversity in

policies, which in turn improves generalization of the learned policies (Parker-Holder

et al., 2020a). Overall, these methods produce agents that can handle unseen strate-

gies more effectively by simulating the richness of the multi-agent environment during

training. Our contributions MACTA and L-BRDiv are population-based training

methods and can be formulated by the PSRO framework.

8.1.1 Empirical Game Theory Analysis

Empirical Game-Theoretic Analysis (EGTA) (Wellman, 2006) is a method-

ology that bridges multi-agent learning and classic game theory. When the game

complexity scales, classic game theory analysis will not achieve a solution concept

analytically (Wellman et al., 2025). Instead of relying on a fully specified analytic

game, EGTA uses simulations of agents (which may be learned reinforcement learn-

ing policies or heuristics) to empirically estimate payoffs for strategy profiles, which

yields an empirical game model capturing the strategic landscape. Researchers can

then analyze this game model for equilibria or other solution concepts, guiding the

138

discovery of new strategies. Notably, automated strategy generation techniques like

PSRO (Lanctot et al., 2017) have become popular EGTA approaches for iteratively

expanding the strategy set. This dissertation instantiates variants of EGTA in an-

alytically complex domains such as cache timing attacks and autonomous driving.

Overall, EGTA provides a practical framework for analyzing multi-agent interactions

through simulation-based game models and offers a promising approach for studying

policy generalization in these settings.

8.1.2 Ad Hoc Teamwork

Ad Hoc Teamwork (AHT) refers to the problem of designing agents that can

collaborate with previously unseen teammates without prior coordination or shared

training. This challenge was formally introduced by Stone et al. (2010), who de-

fined it as the problem of creating “an autonomous agent that is able to efficiently

and robustly collaborate with previously unknown teammates on tasks to which they

are all individually capable of contributing.” Unlike self-play settings where agents

co-train, an AHT agent must generalize to partners exhibiting arbitrary behaviors or

strategies. Prior work in AHT typically assumes a fixed set of heuristic or reinforce-

ment learning-based teammates and focuses on modeling and responding effectively

to them (Mirsky et al., 2022; Barrett et al., 2016; Rahman et al., 2021; Zintgraf

et al., 2021; Papoudakis et al., 2021; Gu et al., 2021). Recognizing the importance of

teammate diversity in training, methods such as Fictitious Co-Play (Strouse et al.,

2021) and Trajectory Diversity (Lupu et al., 2021) aim to generate a broad range of

teammates by randomness. L-BRDiv was proposed to further this line of research

by generating “meaningfully diverse” teammates — those that elicit distinct best re-

sponses — through optimizing best response diversity or adversarial diversity (Cui

et al., 2023a; Charakorn et al., 2023; Rahman et al., 2023). Subsequent work has

built upon this foundation to propose AHT evaluation metrics (Wang et al., 2024)

and develop open-ended training frameworks for AHT (Wang et al., 2025).

139

8.2 Multi-Agent Communication

Communication is a key enabler for coordination in multi-agent systems. By

sharing information, agents can synchronize plans, warn each other of dangers, or

negotiate task allocation. Research on multi-agent communication can be divided

into domain-specific signaling (using engineered messages in contexts like vehicle

coordination) and natural language communication (where agents use or learn

human-like language to communicate). Below, we discuss two sub-areas particularly

relevant to this dissertation: Vehicle-to-Vehicle (V2V) communication in autonomous

driving scenarios, and natural language communications in agent interactions.

8.2.1 Vehicle-to-Vehicle Communication

Network connectivity offers a great potential for improving the safety and

reliability of self-driving cars. Vehicles can now share surrounding information via

Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2X) channels using wireless

technologies, such as Dedicated Short Range Communication (DSRC) (Kenney, 2011)

and cellular-assisted V2X (C-V2X) (Gallo and Harri, 2013; Qualcomm, 2019). These

V2V/V2X communication devices are increasingly deployed in current and upcoming

vehicle models (Thompson, 2016; Plungis, 2018)). The academic community has built

city-scale wireless research platforms (COSMOS (Yu et al., 2019)) and large connected

vehicle testbeds (e.g., MCity (Bezzina et al., 2023), DRIVE C2X (Stahlmann et al.,

2011)), to explore the feasibility of cooperative vehicles and applications. Prior work

(Qiu et al., 2018; Chen et al., 2019) proposed cooperative perception systems that

broaden the vehicle’s visual horizon by sharing raw visual information with other

nearby vehicles. Such systems can be scaled up to dense traffic scenarios leveraging

edge servers (Zhang et al., 2021) or in an ad-hoc fashion (Qiu et al., 2021). Wang

et al. (2020); Li et al. (2021b); Xu et al. (2022) proposed multi-agent perception

models to process sensor information and share compact representations within a

local traffic network. In contrast, Coopernaut focus on cooperative driving of

140

networked vehicles with onboard LiDAR data under realistic networking bandwidth,

advancing towards real-world V2V settings. Following Coopernaut, there has been

advances in V2V modeling and emerging datasets for V2V cooperative perception

(Xu et al., 2022).

8.2.2 Learning to Communicate in Natural Language

Recent advances in multi-agent systems have explored how agents can learn

to communicate using natural language, enabling them to collaborate or compete

in human-interpretable ways. Early work by Lewis et al. (2017) demonstrated that

agents trained on human negotiation dialogues and fine-tuned via self-play reinforce-

ment learning can develop strategic communication behaviors, such as feigning inter-

est, while maintaining grammatical fluency. To avoid drifting into private, uninter-

pretable languages, the authors combined RL with supervised anchoring. Similarly,

Lazaridou et al. (2020) proposed combining a pre-trained language model with a

reinforcement-learned communication policy in referential games, showing that struc-

tural priors from natural language, when aligned with functional RL rewards, produce

messages that are both effective and interpretable. This combination of structural

priors and task rewards remains central to language emergence in agent interactions.

More recent efforts scale these ideas to complex social and strategic games.

CICERO (Bakhtin et al., 2022a) achieved human-level performance in the strategy

game Diplomacy by integrating a planning module trained with RL and a natu-

ral language model fine-tuned on human gameplay data. It grounded dialogue in

strategic intent and filtered outputs for consistency, enabling fluent negotiation with

human players. In parallel, social deduction games such as Werewolf have emerged

as testbeds for emergent communication. Xu et al. (2023a) trained agents to select

among LLM-generated messages using RL, allowing them to develop persuasive and

deceptive dialogue strategies. Brandizzi et al. (2022) pushed further by training both

speaking and listening agents from scratch via self-play RL, showing that meaning-

ful communication can emerge even without human supervision. LLM+Debrief

141

differs from prior work by enabling embodied agents to use natural language for co-

ordinating physical tasks and introducing centralized reflection, where agents

discuss and refine strategies post-execution to improve future performance. Such re-

flective learning has only become feasible with recent advances in large language mod-

els. Collectively, these works demonstrate that grounded reward structures, strategic

alignment, and language priors are key to enabling agents to learn and use natural

language effectively in multi-agent environments.

8.3 Multi-Agent Policy Learning with Mixed Autonomy

Mixed-autonomy scenarios, such as road traffic with both autonomous and

human-driven vehicles, pose unique challenges: autonomous agents must learn poli-

cies that account for human behavior and even influence it to optimize system-level

performance. A representative line of work comes from Vinitsky et al. (2018), who de-

veloped the Flow framework for mixed-autonomy traffic control. Their benchmarks,

like the single AV in a ring road or multiple AVs at intersections, demonstrated that

model-free deep reinforcement learning can eliminate stop-and-go waves and improve

throughput beyond human baselines, as shown by Wu et al. (2018); Wu et al. (2017);

Vinitsky et al. (2018) and Stern et al. (2018).

Later works (Lichtlé et al., 2024) conducted field experiments using the same

simulator and demonstrated that optimizing human proxies with real human driving

data could improve real-world performance of the learned policies. These findings

generalize beyond driving: mixed autonomy is also observed in robotics and multi-

agent games, where AI must operate safely and effectively amid unpredictable human

actions. Techniques such as predictive human modeling and safe RL have emerged

to address this uncertainty. Collectively, these works establish mixed autonomy as a

crucial frontier for human-AI collaboration, offering foundational tools and paradigms

that inform this dissertation’s contributions.

142

8.4 Application Domains

Finally, we review related work in two specific application domains that in-

tersect with our research: (1) the cache timing attack problem in cybersecurity, and

(2) LLM-based agents for autonomous driving. The former showcases multi-agent

dynamics in an adversarial context (attacker vs defender), while the latter represents

a cutting-edge development in multi-agent cooperation with advanced AI models.

8.4.1 The Cache Timing Attack Problem

With increasingly sensitive data and tasks, security in modern computer sys-

tems has become one of the 14 Grand Challenges for Engineering (National Academy

of Engineering, 2007). A prominent example is cache-timing attacks (CTA), which

exploit shared processor caches to leak sensitive information such as encryption keys

(Yarom and Falkner, 2014; Liu et al., 2015), violate isolation boundaries (Kocher et al.,

2019), escalate privileges (Lipp et al., 2018), and even bypass hardware security fea-

tures in modern processors (Ravichandran et al., 2022). In these attacks, adversaries

infer private information from victims through shared cache access patterns.

Over the years, both attack and defense strategies in CTA have been manually

crafted by computer architecture experts. To automate detection, various statisti-

cal and machine learning approaches have been proposed. For instance, CC-Hunter

(Chen and Venkataramani, 2014) uses autocorrelation to detect recurrent patterns in

cache contention, while Cyclone (Harris et al., 2019) applies SVM classifiers based

on cyclic interference patterns. ReplayConfusion (Yan et al., 2016) replays program

traces with altered cache mappings to expose abnormal patterns, and PerSpectron

(Mirbagher-Ajorpaz et al., 2020) trains a neural classifier on memory and latency logs.

EVAX (Mirbagher-Ajorpaz et al., 2022) further enhances detection with GAN-based

augmentation. However, these detectors often rely on fixed patterns and struggle

to handle evolving attack strategies (Xiong and Szefer, 2020; Briongos et al., 2020;

Saileshwar et al., 2021; Guo et al., 2022b;a).

143

Recognizing the arms race nature of security, researchers have adopted game-

theoretic approaches to model attacker-defender interactions (Anwar et al., 2018;

Elderman et al., 2017; Eghtesad et al., 2020). While insightful, these works typically

simplify real-world dynamics and operate within limited strategy spaces. In con-

trast, real-world CTA involves high-dimensional state-action spaces, sparse rewards,

and long horizons, making exhaustive analysis infeasible. MACTA, a reinforcement

learning framework that enables automatic discovery of attacker strategies, was pro-

posed in this dissertation to address this challenge.

8.4.2 LLM Agents for Autonomous Driving

LLM agents have shown potential to address various autonomous driving tasks.

In particular, they are promising in tackling corner cases (Wen et al., 2023b) due

to their reasoning ability and the common-sense knowledge embedded, yielding a

more generalizable autonomous driving stack. Recent studies have explored various

approaches to tailor state-of-the-art LLMs for driving (Wen et al., 2023a; Hu et al.,

2024). However, a foundational challenge lies in grounding LLM agents in the real

world—they need to perceive and understand the traffic scenarios. A straightforward

approach is to obtain the observations from oracle perception models (Mao et al.,

2023b) and convert them to textual descriptions (Mao et al., 2023a; Sha et al., 2023;

Jin et al., 2023; Cui et al., 2023b). Some other studies tackled this challenge by

introducing Visual Language Models (VLMs), which are adapted to driving domains

through in-context instruction tuning (Ma et al., 2023) or fine-tuning (Wayve, 2023;

Xu et al., 2023b; Ding et al., 2023; Yang et al., 2023). To enhance LLM agents’

reasoning ability, prior works have investigated incorporating handcrafted guidance

and examples in the prompts (Sha et al., 2023; Jin et al., 2023; Cui et al., 2023b),

structuring the reasoning procedure (Mao et al., 2023b; Sima et al., 2023), and fine-

tuning the models on driving datasets. Notably, fine-tuning LLMs and VLMs requires

an extensive amount of driving data with language labels. Several approaches have

attempted to adapt existing language-driving datasets for LLM fine-tuning (Ding

144

et al., 2023; Xu et al., 2023b; Ma et al., 2023) or augment large-scale multimodal

driving datasets (Caesar et al., 2020; Sun et al., 2020; Mao et al., 2021) with language

labels (Qian et al., 2023; Shao et al., 2023; Sima et al., 2023; Nie et al., 2023). In

contrast, our work generates scalable driving data through agent self-play. Note that

existing models were predominantly evaluated in an open-loop fashion. In contrast,

similar to some prior work (Shao et al., 2023; Sha et al., 2023; Jin et al., 2023),

we conduct closed-loop evaluation of the proposed method and baseline methods in

CARLA (Dosovitskiy et al., 2017). More importantly, none of the existing work

has explored optimizing LLM agents in a multi-agent setting with natural language

vehicle-to-vehicle communication like LLM+Debrief. Concurrent efforts such as

AgentsCoDriver (Hu et al., 2024) and LangCoop (Gao et al., 2025) explore emergent

communication capabilities of LLMs but do not optimize communication strategies

or policies explicitly.

145

Chapter 9

Future Work

While this dissertation advances several key aspects of multi-agent learning, many

promising directions remain open for future exploration. The future work sections in

each chapter have outlined concrete next steps specific to individual contributions.

This chapter provides a broader perspective by highlighting follow-up work the author

has undertaken that builds upon the techniques introduced in this dissertation, as well

as prospective research directions inspired by the dissertation as a whole.

9.1 Towards Super-Human Pokémon AI

Competitive environments, such as Pokémon Video Game Championships

(VGC) battles, offer a rich and challenging setting for studying multi-agent policy

generalization. The domain is characterized by descriptive natural language rules

and a vast configuration space of team compositions, stochastic environment dynam-

ics, and partial observability—making it an ideal testbed for evaluating generalization

and robustness in multi-agent decision-making.

The author worked with Angliss et al. (2025) to introduce a benchmark,

VGCBench, for the Pokémon VGC domain and involved MACTA as one of the

competitive baselines (referred to as FP in that work). The study demonstrated that

initializing FP with a behavior-cloned policy trained on large-scale human gameplay

146

data significantly enhanced its robustness and performance in this complex setting.

The resulting policy achieved a skill level comparable to players who qualify for the

VGC championship.

Future research may extend this line of work by applying empirical game-

theoretic analysis (EGTA) to better understand the strategic landscape of the game,

or by integrating large language models to interpret natural language rule descriptions

and Pokémon capabilities, potentially enabling generalization across arbitrary team

configurations.

9.2 Open-Ended Training for Ad Hoc Teamwork

The author worked with Wang et al. (2025) to transform the Ad Hoc (AHT)

Teamwork problem into a two-player zero-sum game between an incompatible-teammate

generator and the Ad Hoc Teamwork agent that aims to approximate the best re-

sponse to all possible teammates. To address this formulation, the study introduces a

regret-based open-ended training algorithm, ROTATE, which jointly generates chal-

lenging teammates and trains robust AHT agents. ROTATE builds upon the core idea

from L-BRDiv: namely, that a useful teammate policy is one whose best response

differs significantly from BR policies that the current AHT agent could emulate, thus

encouraging diversity and generalization in learning. Future work could extend the

study of this framework to more complex settings involving N -agent interactions or

general-sum games, broadening its applicability to richer and more realistic ad hoc

teamwork scenarios.

9.3 General-Sum N-Agent L-BRDiv

Although the concept of Minimum Coverage Sets (MCS) can be extended

to settings with more than two agents, L-BRDiv was originally designed for fully

cooperative games and evaluated empirically only in two-player settings.

147

An ongoing line of work by the author aims to extend L-BRDiv to general-

sum games — including fully adversarial, mixed-motive, and cooperative scenarios

— and to environments with more than two agents. This extension involves two key

modifications: (1) enabling support for general-sum games by activating only con-

straint Equation 6.11, and (2) handling multi-agent settings by treating all teammates

as a joint policy. Empirical results suggest that this generalized version of L-BRDiv

is effective in uncovering diverse policies even in complex general-sum environments,

demonstrating the broader applicability of the approach.

9.4 Ad Hoc Teamwork Benchmark

A standardized benchmark for Ad Hoc Teamwork agents is critical yet cur-

rently lacking. Evaluation in AHT is often influenced by the choice of teammate

policies, which are typically hand-crafted and not normalized across works, making

it difficult to fairly compare methods. As the complexity of environments grows, de-

signing diverse evaluation teammates through heuristics becomes infeasible, limiting

our ability to assess an AHT agent’s generalization. Moreover, the compositional na-

ture of multi-agent setups hinders the development of a unified implementation and

interaction API.

An ongoing effort initiated by the author is to build an AHT benchmark that

addresses this gap by providing both a codebase for agent interaction and an eval-

uation framework. The evaluation set must consist of distinct teammates sampled

uniformly or weighted through methods such as cross-play analysis or similarity-based

selection. To probe collaborative weaknesses, we propose using diagnostic tools like

NashConv or regret-based exploitability metrics that reveal how well an agent collab-

orates under worst-case teammate configurations without falling into self-sabotage—a

scenario where an agent undermines team performance despite having cooperative po-

tential. Existing benchmarks like MeltingPot (Agapiou et al., 2022) fall short in this

regard: they often involve too many agents, contain mixed-motive or non-cooperative

148

elements, and lack the evaluative structure and diagnostics necessary to systemati-

cally advance AHT research.

9.5 Natural Language Communication and Collaboration for
Embodied Agents

As embodied agents become more prevalent in real-world applications, rang-

ing from autonomous driving to household robotics, natural language emerges as a

crucial medium for collaboration. Unlike structured protocols, language enables flex-

ible, human-compatible communication that can convey intentions, constraints, and

situational updates. However, enabling embodied agents to effectively use natural

language for coordination poses several challenges: grounding language in perception

and action, maintaining coherence in multi-turn interactions, and handling ambigu-

ity in real-time decision-making. These challenges are exacerbated in multi-agent

settings, where agents must communicate with both humans and other agents, some-

times under zero-shot or ad hoc conditions.

While this dissertation takes a step toward this direction through the develop-

ment of the LLM+Debrief framework, future work could significantly enhance its

capabilities along two key dimensions: (1) enabling language-conditioned and com-

positional embodied motion, and (2) developing physical understanding and reason-

ing in natural language. Moreover, methods such as MACTA and L-BRDiv could

contribute to generating diverse strategy profiles, thereby enriching the spectrum of

behaviors in competitive or collaborative embodied agent interactions.

9.6 Multi-Agent Strategic Reasoning for Large Language Mod-
els

Large Language Models (LLMs) have recently demonstrated impressive capa-

bilities in single-agent reasoning tasks, including arithmetic problem-solving, code

generation, and chain-of-thought prompting. However, multi-agent environments

149

pose a fundamentally different set of challenges that require reasoning beyond an

isolated perspective. In such settings, agents must account not only for the underly-

ing physical-world dynamics but also for the diverse intentions, beliefs, and potential

actions of other agents—whether they are collaborators, competitors, or fall some-

where in between. Strategic reasoning in these contexts involves anticipating others’

moves, coordinating joint plans, negotiating trade-offs, and adapting dynamically to

the observed behaviors of teammates or opponents.

Current LLMs are not yet capable of performing such multi-agent strategic

reasoning at a level comparable to human experts, especially in complex, high-stakes

domains such as Go or Pokémon VGC. These domains demand long-term planning,

recursive opponent modeling, and nuanced understanding of team-level synergies—all

of which challenge current capabilities. However, techniques developed in this dis-

sertation can offer a path forward. For example, MACTA provides promising im-

plications not only for improving robustness and generalization but also for studying

safety alignment: by training LLMs against a curriculum of diverse training partners

or attacker models, we may be able to better understand their vulnerabilities and

encourage the emergence of safer, strategically aligned behaviors.

9.7 Multi-Agent Collaboration Safety

The communication-based learning methods proposed in this dissertation, such

as LLM+Debrief and Coopernaut, operate under the assumption that all par-

ticipating agents have cooperative intentions. While this assumption is valid in con-

trolled environments, real-world multi-agent systems must be designed to handle a

wider range of scenarios. In practice, agents may encounter adversarial behaviors,

faulty communication, or misleading messages that compromise the safety and effec-

tiveness of collaboration. Relying solely on honest communication can leave systems

vulnerable to manipulation or coordination failure.

To ensure collaboration safety in open and potentially adversarial settings, fu-

150

ture work should investigate more robust communication mechanisms. For example,

incorporating redundancy in information sharing, developing verification or consis-

tency checks, and exploring cryptographic techniques to authenticate the source and

integrity of messages. Agents should also be trained to identify and adapt to inconsis-

tencies or signs of deception in communication. Extending the frameworks introduced

in this dissertation to handle such challenges is a critical step toward building resilient

and secure multi-agent systems that can operate safely in the real world.

151

Chapter 10

Conclusion

The growing integration of artificial intelligence into physical systems calls for agents

that can operate robustly in dynamic, uncertain, and human-populated environments.

This dissertation addresses a fundamental question: How can autonomous agents

be trained to effectively communicate and collaborate with diverse, pre-

viously unseen partners in open, complex environments? The investigation

was structured around three main dimensions of the key research question:

(A) Communication-Supporting Representations

(B) Multi-agent Policy Generalization

(C) Collaborate with Human-Like Agents.

This work introduces a series of technical contributions across multi-agent reinforce-

ment learning, teammate policy generation, and mixed-autonomy traffic coordination,

each addressing key challenges within these dimensions.

10.1 Contributions

This dissertation makes the following contributions to the multi-agent learning

literature:

152

1(a) This dissertation introduces and evaluates Coopernaut (Chapter 3),

an end-to-end driving framework that learns transmittable representations of local

point-cloud observations through imitation learning. These learned representations

support safer driving with significantly fewer collisions compared to disconnected

agents in accident-prone scenarios, without compromising traffic efficiency. This con-

tribution addresses Dimension A, focusing on what information to communicate

under bandwidth constraints in cooperative autonomous driving.

1(b) This dissertation presents LLM+Debrief (Chapter 4), a self-play

learning framework that enables embodied large language model (LLM) agents to

communicate and coordinate via natural language in driving scenarios. Agents are

trained to articulate intentions, share observations, and negotiate driving plans. Ex-

perimental results demonstrate that agents can collaborate effectively using human-

comprehensible language, a critical step toward human-AI teaming. This contribution

addresses Dimensions A and C by enabling natural language-based joint decision-

making among agents in dynamic environments.

2(a) This dissertation introduces MACTA (Chapter 5), a training frame-

work that combines Proximal Policy Optimization (Schulman et al., 2017) with Fic-

titious Play (Brown, 1951) to develop robust policies in adversarial settings. The re-

sulting policy demonstrates strong generalization to unseen and adaptive opponents,

as shown in a simulated cache-timing attack scenario. This contribution addresses

Dimension B by enhancing policy generalization through game-theoretic reinforce-

ment learning.

2(b) This dissertation addresses the challenge of generalization in coopera-

tive multi-agent settings by proposing that an agent can emulate a coverage set of

the teammate policy space through exposure to a diverse range of training partners

(Chapter 6). To this end, it introduces L-BRDiv, a teammate generation method

that approximates a diverse subset of policies requiring distinct best responses. Re-

sults show that L-BRDiv produces qualitatively diverse teammates and enables ad

153

hoc agents to achieve state-of-the-art performance on standard ad hoc teamwork

benchmarks. This contribution directly supports Dimension B, offering a practical

approach to diversity-aware training in cooperative multi-agent environments.

3 This dissertation conducts an empirical study (Chapter 7) on the applica-

tion of decentralized multi-agent reinforcement learning in mixed-autonomy traffic

coordination. In this study, reinforcement learning agents trained without explicit

communication successfully interact with both human drivers and AI agents. Find-

ings reveal that a small number of RL-based autonomous vehicles can collaborate to

influence human behavior and significantly improve traffic efficiency in open settings.

This contribution addresses Dimension C, highlighting how decentralized agents

can integrate and coordinate with human participants in real-world tasks.

10.2 Broader Impact

This dissertation contributes to the design of ad hoc and open-world AI sys-

tems that are not only intelligent but also socially compatible with diverse agents,

including humans. Through empirical case studies in autonomous driving, mixed-

autonomy traffic systems, and strategic reasoning, this work demonstrates that AI

agents can be trained to:

1. Coordinate with previously unseen and diverse partners

2. Communicate effectively in natural language

3. Influence and collaborate with humans in dynamic, open environments

These findings offer concrete insights into the development of collaborative and gener-

alizable multi-agent AI systems, advancing the goal of deploying adaptive and socially

aligned agents in the real world.

154

Appendix

155

Appendix A

Additional Details on LLM+Debrief

This appendix provides supplementary information for Chapter 4, including imple-

mentation details of the proposed method, environment design, example prompts,

and representative learned cooperative strategies and knowledge.

A.1 Method

Algorithm 2 implements LLM+Debrief, a multi-LLM-agent learning frame-

work that leverages communication and centralized reflection using large language

models (LLMs) to enhance coordination between agents in a simulated environment.

A.1.1 Implementation Details

We utilize gpt-4o-mini with a temperature of 0.2 for the agent policy, making

decisions and collecting experiences every 0.5 seconds (10 simulation frames). The

message dialogs received are maintained within a 2-second window according to the

age of the message during each episode. The debriefing process is conducted after

each episode for a total of 60 episodes, comprising a N = 1 round of discussion among

agents followed by a final round of individual reflection to summarize and consolidate

the discussion results. To enable stronger reasoning and summarization capabilities,

gpt-4o is used for the debriefing sessions and reflection. The transition data are

156

Algorithm 2 Multi-Agent Centralized Debrief Reflection with Communication
Input: Multi-agent Simulation Environment env, LLM agents{πi∈I}, Debriefing
round R.
Initialize: Knowledge {Ki∈I}, Replay Buffer ReplayBuffer
for j=1, 2, 3... // Training epoch do

{obsi} = env.reset()
while t < T // Time step do

for i = 1, ..., N //Per agent, but execute in parallel do
// Get CoT reasoning for each agent based on observation and knowledge
reasoningi ← agents.reason(obsi, Ki)
// Get decisions for each agent based on observation and knowledge
messagei, controli ← agents.act(obs, Ki, reasoningi)

end for

// Step the environment with actions
{next_obsi} ← env.step({messagei, controli})
// Store experience to the replay buffer
ReplayBuffer.add(obs, next_obs, reasonings, messages)
// Message Dialog becomes part of the observation
{obsi} ← {next_obsi} ∪ {messagei}

end while

// Get episode feedback from the environment
feedback ← env.evaluate()

// Lable all the transition data in hindsight
data_post_processing(ReplayBuffer)
// Debriefing and learning from feedback, update knowledge
// Randomly decide debrief order
for r = 1, ..., R do

if strategy=None then
cooperation_stategy = agentr.propose()

else
cooperation_stategy = agentr.revise()

end if
end for
//Summarize the dialogue and use it for future learning
{Ki} ← agent.reflect()({Ki})

end for
last {πi,j} during the last iteration of self-play

157

sampled from the trajectory with a batch size of 4.

The Batch Context Sampling follows the following heuristic rule to assign

probability mass on each transition data point and sample according to the normalized

probability mass:

Weighti = 1 + 2× 1{exists other agents}

+ 5×max(2− time to collision, 0)

+ 10× 1{actions contribute to collision}

+ 0.1× 1{stagnation} × {timestep}

+ 2× 1{actions contribute to stagnation}

(A.1)

where 1 represents the indicator function that takes the value 1 when the event

happens, and 0 otherwise.

A.1.2 Inference Latencies

Table A.1 summarizes the average latencies and message sizes for each scenario

in the communication setting, evaluated using gpt-4o-mini on a machine with Intel

Gen 10 CPUs. The metrics include partial observable captioner latency (in seconds),

reasoning latency (in seconds), decision latency (in seconds, excluding reasoning la-

tency), and message size (in Mb). Data are aggregated over 10 episodes at each LLM

decision step. Scenarios without communication exhibit slightly lower reasoning and

decision latencies compared to those with communication within the same order of

magnitude. We observe that the reasoning step is the main bottleneck of policy in-

ference. However, the reasoning step is inevitable for LLM agents to make reasonable

decisions without finetuning.

A.2 Environment

The TalkingVehiclesGym environment (Figure A.1) adopts the Gymna-

sium and PettingZoo APIs, assuming a parallel-acting setup to support efficient par-

158

Table A.1: Captioning, reasoning, decision latency, message size using gpt-4o-mini LLM
Policy

Latencies
Scenario Overtake Left Turn Red Light Overtake Highway Merge Highway Exit

Captioner Latency (s) 0.022 0.023 0.025 0.022 0.017 0.016
Reasoning Latency (s) 10.32 10.89 9.93 9.57 12.10 10.55
Decision Latency (s) 1.06 1.25 1.37 0.86 1.05 1.27
Message Size (Mb) 0.0016 0.0013 0.0014 0.0014 0.0005 0.0005

allel language model inference. We significantly modified the CARLA scenario runner

to enable multi-agent communication and heterogeneous agent configurations within

CARLA. TalkingVehiclesGym interfaces with both the CARLA server and client,

establishing agents as a bridge between the simulator and learnable policies that

rely on experience buffers for optimization. Language-communicating agents utilize

an MQTT-based transceiver we implemented, enabling direct inter-agent communi-

cation without routing through the server.

Env (Server + Client)

Agents
Sensor subscription
Message passing
Low-level control

Scenario

Vehicles

Other actors

Policy
learning/human/

heuristic

Captions, feedbacks
Sensor data, reward

Control / Message

Apply control

Carla Data Provider
Experience

observation, action,
reasoning, reward,

feedback

CARLA Server

Client
Evaluator

Reward

Feedback

Talking Vehicles Gym
A multi-agent, gymnasium (PettingZoo), high-fidelity, communication-supporting, scenario-based environment

Policy

Figure A.1: TalkingVehiclesGym simulation framework. An agent is defined within
the scenario and has a specific sensor registration and action space. A policy takes observa-
tions from an agent, computes actions, and learn from the experience replay buffer.

159

A.3 Example Agent Prompting Flow

Figure A.2 serves as a demonstration of the prompts; Please refer to our code

for the actual prompts for the policy and the reflection process.

System
You are driving a car, and your goal is pass the intersection if the traffic lights are green safely
and timely, do not stagnate if everything is safe.
You can coordinate with any other vehicles to avoid collisions and or reduce wait time. I will give
you description of the driving situation from your LiDAR perception, but note that it may be partially
observable.\nThe observations are formatted as:
Observation: <observation>
Possible actions are: 1. Stop 2. go (follow the planned route) 3.speed up 4.slow down

1. Sign of the Lane ID indicate the direction of the lane.
2. Your received messages are from other vehicles. Be sure to analyze the messages and how that message
will affect you.
3. You decide an action every 10 frames (0.5 seconds).
4. Do not switch your action unless it is necessary.

User
Observation: You are driving Vehicle 241, a vehicle.lincoln.mkz_2020. Your current speed

is 0.00 m/s, and the speed limit is 10.00 m/s. Your current speed is lower than the speed

limit. The traffic light for you is currently green. You are at a 4-way intersection with

traffic lights.

Around you, there are other vehicles:

(1) Vehicle 249 is a vehicle.carlamotors.carlacola. Vehicle 249 is stationary. It is in

lane -1, a single-lane road on the left-turning point of road 4 at the intersection.

Vehicle 249 is side-by-side and 1.29 meters on your left...

Start of Message Dialog:\n(Received Message from Vehicle 249, 2.0 seconds ago: Attention

all vehicles: Vehicle 242 (Audi) is approaching the intersection at 8.55 m/s against a

red light, located 3.54 meters in front of me and 10.56 meters to my left. Vehicle 241,

please remain stationary until I confirm the threat has stopped. Vehicle 248, you are

safe to remain stationary as well. I will provide updates shortly.) ... End of Message

It is your turn to send a message to other vehicles now

Agent
Based on the current observations and the received messages, here is the assessment of
the situation:1. **Traffic Light Status**: The traffic light for Vehicle 241 (me) is green, which
typically allows me to proceed through the intersection.\n\n2. **Surrounding Vehicles**:\n -
Vehicle 249: Stationary, providing updates about the situation.\n - **Vehicle 248**:
Stationary, following the instructions from Vehicle 249.\n - **Vehicle 247**: Stationary, also
following the instructions from Vehicle 249.\n - **Vehicle 242**: Approaching the intersection
at 7.62 m/s against a red light, currently 6.84 meters in front of me. This vehicle poses a
significant threat as it is not complying with the traffic signal.\n\n3. **Received Messages**: \n
- Vehicle 249 has consistently warned all vehicles to remain stationary due to the
approaching Vehicle 242, which is running a red light. The updates indicate that Vehicle 242
is getting closer and remains a threat.\n\n4. **Potential Outcomes**:\n - **If I proceed (go)**:
I risk a collision with Vehicle 242, which is approaching the intersection against a red light.
This is unsafe and could lead to an accident.\n …

User
You MUST respond with an action, formatted as a JSON object with the following
structure:
command: <command>
where you replace <command> with your actual command, choosing from: go, stop
Do nothing else but return the action.

Agent
{‘command’: ‘stop’, ‘message’:'Vehicle 241: Acknowledging the updates from Vehicle
249. I will remain stationary until further notice. Please keep me updated on the
status of Vehicle 242. Safety first.'}

Figure A.2: Example agent prompting flow.

160

A.4 Example Learned Knowledge and Cooperative Strategies

The following knowledge and cooperation strategy examples are fully gener-

ated by LLMs without human modification.

A.4.1 Overtake (Perception)

Car1 (Overtaking Car)

knowledge: To efficiently and safely overtake a stationary vehicle in lane 1

by moving into lane -1, I will integrate active sensor use with continuous communica-

tion. The stationary vehicle will monitor lane -1 and provide real-time alerts on traffic

status. Simultaneously, I will use my sensors to independently verify lane status. If

both sources confirm lane -1 is clear, I will promptly proceed with the overtaking

maneuver to avoid stagnation. If the stationary vehicle detects traffic, it will immedi-

ately advise me to hold my position. I will remain ready to accelerate smoothly once

the lane is confirmed clear. This dual-verification approach, with proactive sensor

use and real-time communication, will prevent collisions and ensure a timely and safe

overtaking maneuver.

cooperative strategy: In our refined cooperative strategy, the stationary

vehicle in lane 1 will continuously monitor lane -1 for any approaching traffic and

provide real-time alerts. Meanwhile, the overtaking vehicle will actively use its sen-

sors to independently verify the status of lane -1. If both the stationary vehicle’s

observations and the overtaking vehicle’s sensors confirm that lane -1 is clear, the

overtaking vehicle will promptly proceed with the maneuver to avoid stagnation. If

the stationary vehicle detects any traffic in lane -1, it will immediately communicate

this, advising the overtaking vehicle to hold its position. The overtaking vehicle will

remain ready to accelerate smoothly once the lane is confirmed clear. This dual-

verification approach, combining sensor data and real-time communication, ensures

a timely and safe overtaking maneuver, preventing collisions and minimizing stagna-

tion.

161

Truck (Stopped Truck in Lane 1)

knowledge: As the stationary truck in lane 1, my role is to continuously

monitor lane -1 for any visible traffic and provide immediate alerts if I detect any

vehicles, advising the overtaking vehicle to hold its position. The overtaking vehi-

cle should actively use its sensors to independently verify lane status. If both my

observations and the overtaking vehicle’s sensors confirm that lane -1 is clear, the

overtaking vehicle should promptly proceed with the overtaking maneuver to avoid

stagnation. This dual-verification approach ensures a safe and efficient overtaking

maneuver, preventing collisions and minimizing stagnation.

cooperative strategy: In our refined cooperative strategy, as the stationary

truck in lane 1, I will continuously monitor lane -1 for any approaching traffic and

provide immediate alerts if I detect any vehicles, advising the overtaking vehicle to

hold its position. Meanwhile, the overtaking vehicle will actively use its sensors to

independently verify the status of lane -1. If both my observations and the overtaking

vehicle’s sensors confirm that lane -1 is clear, the overtaking vehicle should promptly

proceed with the overtaking maneuver to avoid stagnation. This dual-verification

approach, combining sensor data and real-time alerts, ensures a timely and safe over-

taking maneuver, preventing collisions and minimizing stagnation.

A.4.2 Red Light (Perception)

Car1 (Proceeding Forward with Green Lights)

knowledge: As a vehicle with a green light at an intersection, my primary

task is to pass through safely and timely. I should communicate my intention to

proceed to nearby cooperative vehicles and request confirmation that the intersection

is clear. I must remain vigilant for warnings from vehicles with a clear view of

the intersection about potential threats, such as vehicles approaching against a red

light. If a warning is received, I should remain stationary until the monitoring vehicle

confirms the intersection is clear. Continuous communication and responsiveness to

162

updates are key to preventing collisions and avoiding unnecessary delays, allowing me

to proceed promptly when it is safe.

cooperative strategy: In our cooperative strategy, the vehicle with the best

view of the intersection, typically positioned to turn left, will lead in monitoring and

communicating updates about potential threats. This vehicle will provide real-time

information about any approaching vehicles against a red light, including their dis-

tance and speed, and confirm when they have stopped or are no longer a threat.

If a threat is detected, the vehicle with the green light, ready to proceed straight

through the intersection, should remain stationary until the intersection is confirmed

clear. The monitoring vehicle will send updates every few seconds to keep all vehicles

informed. Once the threat is resolved, the monitoring vehicle will confirm the inter-

section is clear, allowing the vehicle with the green light to proceed promptly and

safely. This plan ensures safety by preventing collisions and minimizes unnecessary

delays by enabling vehicles to pass through the intersection efficiently when it is safe

to do so.

Truck (Stopped at Intersection)

knowledge: As the stationary truck with a clear view of the intersection, my

primary role is to monitor traffic and provide real-time updates to ensure the safe

and efficient passage of vehicles. If I detect any vehicle approaching the intersection

against a red light, I must immediately alert all nearby vehicles, providing specific

information about the threat’s distance and speed. The vehicle with the green light

should remain stationary until I confirm that the threat has stopped or is no longer

present. I will send updates every few seconds to keep all vehicles informed. Once the

intersection is clear, I will confirm this, allowing the vehicle with the green light to

proceed promptly and safely. This proactive communication ensures that all vehicles

are aware of potential threats and can take appropriate actions to prevent collisions,

while minimizing unnecessary delays by enabling vehicles to pass through the inter-

section efficiently when it is safe. My task is to facilitate this communication and

163

coordination to maintain a balance between safety and efficiency at the intersection.

cooperative strategy: In our cooperative strategy, the vehicle with the best

view of the intersection, which is the stationary truck (myself), will lead in moni-

toring and communicating updates about potential threats. If a vehicle is detected

approaching against a red light, I will immediately alert all vehicles, providing specific

information about the threat’s distance and speed. The vehicle with the green light,

positioned to proceed straight through the intersection, should remain stationary un-

til I confirm that the threat has stopped or is no longer present. I will send updates

every few seconds to keep all vehicles informed. Once the intersection is clear, I will

confirm this, allowing the vehicle with the green light to proceed promptly and safely.

This plan ensures safety by preventing collisions and minimizes unnecessary delays

by enabling vehicles to pass through the intersection efficiently when it is safe to do

so.

A.4.3 Left Turn (Perception)

Car1 (Left-Turning)

knowledge: To execute a northbound left turn at the intersection while yield-

ing to oncoming southbound traffic from lane -2, I should first slow down to assess the

speed and distance of any oncoming vehicles. I will rely on the stationary vehicle at

the intersection to continuously monitor traffic and provide real-time updates. This

vehicle will send messages advising me when it is safe to proceed and instruct the

oncoming vehicle to yield. I should only proceed with the turn once I receive con-

firmation that the oncoming vehicle has acknowledged the yield instruction. If the

oncoming vehicle does not acknowledge or adjust its speed, I should stop and wait

until it is safe to proceed. This approach ensures a safe and efficient left turn without

causing collisions or unnecessary stagnation.

cooperative knowledge: In our revised cooperative strategy, the stationary

vehicle at the intersection will continuously monitor the traffic flow and provide real-

164

time updates to both the left-turning vehicle (myself) and the oncoming vehicle.

The stationary vehicle will send a message advising me to slow down and assess the

situation, ensuring I only proceed with the left turn when I receive confirmation that

the oncoming vehicle has acknowledged the yield instruction. Simultaneously, the

stationary vehicle will instruct the oncoming vehicle to yield and adjust its speed to

allow me to pass safely. If the oncoming vehicle does not acknowledge or adjust its

speed, the stationary vehicle will alert me to stop and wait until it is safe to proceed.

This plan ensures that all vehicles are aware of each other’s intentions, allowing me

to make the left turn safely and efficiently without causing collisions or unnecessary

stagnation.

Truck (Stopped at Intersection)

knowledge: As a stationary vehicle with a clear view of the intersection,

my primary task is to facilitate the safe and quick passage of the northbound left-

turning vehicle by sharing critical traffic information. I must continuously monitor

the intersection and assess the speed and distance of any oncoming vehicles. If an

oncoming vehicle is approaching at a speed that could lead to a collision, I will

send timely messages advising the left-turning vehicle to slow down and assess the

situation, ensuring it only proceeds when the oncoming vehicle has acknowledged the

yield instruction. I will also instruct the oncoming vehicle to yield and adjust its

speed. If the oncoming vehicle does not acknowledge or adjust its speed, I will alert

the left-turning vehicle to stop and wait until it is safe to proceed. This ensures

clear communication and proactive monitoring, preventing collisions and avoiding

unnecessary stagnation.

cooperative knowledge: In our revised cooperative strategy, as the station-

ary vehicle with a clear view of the intersection, I will continuously monitor the traffic

flow and provide real-time updates to both the northbound left-turning vehicle and

the oncoming vehicle. I will send a message to the left-turning vehicle advising it

to slow down and assess the situation, ensuring it only proceeds when it receives

165

confirmation that the oncoming vehicle has acknowledged the yield instruction. Si-

multaneously, I will send a message to the oncoming vehicle instructing it to yield

and adjust its speed to allow the left-turning vehicle to pass safely. If the oncoming

vehicle does not acknowledge or adjust its speed, I will alert the left-turning vehicle to

stop and wait until it is safe to proceed. This plan ensures that all vehicles are aware

of each other’s intentions, allowing the left-turning vehicle to pass the intersection

safely and quickly without causing collisions or unnecessary stagnation.

A.4.4 Overtake (Negotiation)

Car1 (Overtaking Car)

knowledge: To successfully overtake the stopped broken truck in lane 1 by

using lane -1, prioritize clear communication and adaptive speed management. Before

attempting the maneuver, send a message to any oncoming vehicle in lane -1, indi-

cating your intention to overtake and requesting a slight temporary speed reduction

to create a safe gap. Wait for acknowledgment and ensure the gap is sufficient before

proceeding. During the overtaking, minimize your time in lane -1 to reduce collision

risk. Once safely back in lane 1, send a confirmation message to allow the oncoming

vehicle to resume its speed. This approach ensures a coordinated and safe overtaking

maneuver without causing unnecessary delays or collisions.

cooperative strategy: In our cooperative strategy, when I, as the vehicle

intending to overtake a stationary truck in my lane, need to move into the opposite

lane, I will first send a message to the oncoming vehicle in the opposite lane, indicating

my intention to overtake and requesting a temporary speed reduction to create a safe

gap. The oncoming vehicle should acknowledge this request and, if feasible, slightly

slow down to create a safe gap, but avoid coming to a complete stop to prevent

stagnation. Once the gap is sufficient, I will proceed with the overtaking maneuver

and return to my original lane as quickly and safely as possible. After completing

the maneuver, I will send a confirmation message, allowing the oncoming vehicle to

166

resume its target speed. This plan ensures that I minimize my time in the opposite

lane while the other vehicle maintains its urgency, thus preventing collisions and

avoiding stagnation. Effective communication and adaptive speed adjustments are

key to ensuring both vehicles can complete their tasks safely and efficiently.

Car2 (Opposite Car)

knowledge: To effectively execute the task of going forward and keeping lane

in lane -1 while in a hurry, prioritize maintaining speed and lane. If a vehicle in the

opposite lane intends to overtake a stationary vehicle and needs to temporarily move

into my lane, anticipate receiving a message indicating this intention. Upon receiving

such a message, acknowledge it and, if feasible, slightly slow down to create a safe

gap for the overtaking maneuver, but avoid coming to a complete stop to prevent

stagnation. Ensure the gap is sufficient for safe passage. Once the overtaking vehi-

cle has safely returned to its original lane, resume the target speed. This approach

maintains urgency while facilitating safe and efficient traffic flow, preventing colli-

sions and avoiding stagnation. Prioritize effective communication and adaptive speed

adjustments.

cooperative strategy: In our cooperative strategy, when a vehicle in the

opposite lane intends to overtake a stationary vehicle and temporarily move into my

lane, it should first send a message indicating its intention and request a temporary

speed adjustment. As the vehicle tasked with going forward and keeping lane, I should

acknowledge this request and, if feasible, slightly slow down to create a safe gap, but

avoid coming to a complete stop to prevent stagnation. The overtaking vehicle should

proceed with the maneuver as quickly and safely as possible, minimizing its time in

my lane. Once the overtaking vehicle has safely returned to its original lane, it

should send a confirmation message, allowing me to resume my target speed. This

plan ensures that the overtaking vehicle minimizes its time in the opposite lane while

I maintain my urgency, thus preventing collisions and avoiding stagnation. Effective

communication and adaptive speed adjustments are key to ensuring both vehicles can

167

complete their tasks safely and efficiently.

A.4.5 Highway Merge (Negotiation)

Car1 (Merging Vehicle)

knowledge: To effectively merge onto the highway when in a hurry, I should

initiate communication by indicating my intention to merge and request the vehicle

directly on the highway lane to my left to create a gap by slightly slowing down or

temporarily changing lanes if feasible. I must observe the responses from vehicles

already on the highway, particularly the one closest to the merge point, and adjust

my speed to align with the newly created gap. I should not accelerate until the

highway vehicle has stabilized its speed and distance. Continuous communication is

crucial to ensure all vehicles are aware of each other’s actions, allowing for coordinated

speed and lane adjustments. If the gap is insufficient, I should be prepared to slow

down significantly or stop to reassess the situation, ensuring a safe and efficient merge

without causing collisions or stagnation.

cooperative strategy: In the cooperative strategy, as the merging vehicle, I

will initiate communication by indicating my intention to merge onto the highway and

requesting the vehicle directly to my left on the highway to create a gap by slightly

slowing down or, if feasible, temporarily changing lanes. The highway vehicle should

acknowledge this request and adjust its position accordingly, ensuring it maintains

a safe distance. Meanwhile, I will adjust my speed to align with the newly created

gap, ensuring I do not accelerate until the highway vehicle has stabilized its speed and

distance. The vehicle behind the highway vehicle should maintain its speed or slightly

slow down to prevent closing the gap prematurely. Continuous communication will be

maintained, with updates on speed adjustments and intentions, to ensure all vehicles

are aware of each other’s actions. This approach will prevent collisions by ensuring a

clear and sufficient gap for merging while avoiding stagnation by coordinating speed

and lane adjustments effectively.

168

Car2 (Highway Vehicle)

knowledge: To execute the task of keeping on the original highway lane and

going forward while in a hurry, prioritize maintaining a safe and efficient flow of

traffic. When approaching a merge junction, be vigilant for merging vehicles and

anticipate their need to enter the highway. If a merging vehicle communicates its

intention, acknowledge the request and slightly reduce speed to create a sufficient

gap, facilitating a safe merge. Ensure clear communication of actions to allow the

merging vehicle to adjust its speed accordingly. Maintain your lane and continue

moving forward, gradually accelerating to the desired speed once the merging vehicle

has safely merged. Ensure the vehicle behind maintains its speed to prevent closing

the gap prematurely. Continuous communication and dynamic speed adjustments are

key to preventing collisions and avoiding stagnation, allowing the task to be fulfilled

efficiently.

cooperative strategy: In the cooperative strategy, the merging vehicle should

initiate communication by indicating its intention to merge onto the highway and re-

questing the highway vehicle directly to its left to create a gap by slightly slowing

down. The highway vehicle, which is myself, should acknowledge this request and

slightly reduce speed to create a safe merging space, while maintaining my lane and

preparing to accelerate once the merge is complete. The merging vehicle should adjust

its speed to align with the gap, ensuring it does not accelerate until I have stabilized

my speed and distance. The vehicle behind me on the highway should maintain its

speed or slightly slow down to prevent closing the gap prematurely. Continuous com-

munication should be maintained, with updates on speed adjustments and intentions,

to ensure all vehicles are aware of each other’s actions. This approach will prevent

collisions by ensuring a clear and sufficient gap for merging while avoiding stagnation

by coordinating speed adjustments effectively.

169

A.4.6 Highway Exit (Negotiation)

Car1 (Exiting Highway)

knowledge: To exit the highway via the leftmost lane, initiate communication

with the vehicle in the leftmost lane at least 100 meters before the exit junction, clearly

indicating your intention to merge. Maintain a reasonable speed in the high-speed

lane while seeking a safe gap to merge ahead of the traffic flow. If the vehicle in the

leftmost lane is slightly ahead or side-by-side, it should decelerate slightly to create

a gap. Adjust your speed dynamically to align with the gap being created, ensuring

a smooth and safe transition into the left lane. Physically verify that the gap is

sufficient for a safe merge before attempting the lane change. If the vehicle in the

leftmost lane is stationary or unable to create a gap, communicate to confirm this

status and seek alternative gaps or adjust your route if necessary. Prioritize visual

confirmation over communication alone, and be prepared to adapt your strategy to

the current traffic conditions to prevent collisions and avoid traffic stagnation.

cooperative knowledge: In our cooperative strategy, as the vehicle in the

high-speed lane intending to exit, I will initiate communication with the vehicle in

the leftmost lane at least 100 meters before the exit junction, clearly indicating my

intention to merge. If the vehicle in the leftmost lane is slightly ahead or side-by-side,

it should decelerate slightly to create a gap ahead, allowing me to merge smoothly

without causing stagnation. I will maintain a speed that allows me to observe the

gap being created and will only proceed with the lane change once I have a clear

visual confirmation of a safe gap. If the vehicle in the leftmost lane is stationary or

unable to create a gap due to traffic conditions, it should communicate this status

immediately. In such cases, I will adjust my speed to maintain a safe distance and seek

an alternative gap or prepare to slow down significantly if necessary. Both vehicles

should actively communicate their speed adjustments and confirm when a safe gap is

established, ensuring that the lane change is executed without collision or stagnation.

Car2 (Leader of the Left Flow Staying on the Highway)

170

knowledge: To effectively execute the task of staying in the leftmost lane and

proceeding forward on the highway while prioritizing safety in a hurry, I should keep

the following updated knowledge in mind: 1. **Proactive Communication:** Monitor

for messages from adjacent vehicles intending to merge into my lane, ensuring commu-

nication is initiated at least 100 meters before exit junctions, and respond promptly

to facilitate coordination. 2. **Adaptive Speed Management:** Decelerate slightly

to create a sufficient gap when a merging vehicle is slightly ahead or side-by-side, al-

lowing it to merge smoothly without causing stagnation. 3. **Enhanced Situational

Awareness:** Continuously assess the speed and position of vehicles in adjacent lanes

to anticipate merging actions and adjust my speed accordingly, ensuring a safe and

efficient merge. 4. **Coordinated Communication:** Actively communicate and con-

firm speed adjustments with the merging vehicle to establish a safe gap, preventing

collisions and maintaining traffic flow. 5. **Task Focus:** Maintain my position in

the leftmost lane and proceed efficiently, ensuring cooperative actions support safety

and fluid traffic flow, especially near exit junctions.

cooperative knowledge: In our cooperative strategy, when a vehicle in the

adjacent lane intends to merge into the leftmost lane for a highway exit, it should

initiate communication at least 100 meters before the exit junction, clearly indicating

its intention to merge. As the vehicle currently in the leftmost lane, my responsibility

is to promptly acknowledge this message and assess the traffic situation. If I am

slightly ahead or side-by-side with the merging vehicle, I will decelerate slightly to

create a gap ahead, allowing the merging vehicle to merge smoothly without causing

stagnation. The merging vehicle should maintain a speed that allows it to observe

the gap being created and only proceed with the lane change once it has a clear visual

confirmation of a safe gap. If I am stationary or unable to create a gap due to traffic

conditions, I will communicate this status immediately. In such cases, the merging

vehicle should adjust its speed to maintain a safe distance and seek an alternative

gap or prepare to slow down significantly if necessary. Both vehicles should actively

communicate their speed adjustments and confirm when a safe gap is established,

171

ensuring that the lane change is executed without collision or stagnation."

A.4.7 Highway Merge (Negotiation) Silent Reflection

Car1 (Merging Vehicle) knowledge: Updated Knowledge for Merging onto

the Highway:1. **Continuous Monitoring:** Always be aware of vehicles behind,

directly in front, or to the side, as they pose immediate collision risks.2. **Early Gap

Identification:** Identify potential merging gaps early and adjust speed in advance

to align with these gaps, considering both vehicles ahead and behind.3. **Dynamic

Speed Adjustment:** Accelerate only when a clear and safe gap is confirmed. Be

ready to slow down if a vehicle behind is approaching quickly or if a vehicle ahead is

close.4. **Maintain Safe Distance:** Prioritize keeping a safe distance from vehicles

directly ahead and behind. If a vehicle is too close, adjust speed to increase the gap

before merging.5. **Safety Over Speed:** Prioritize safe merging over speed. Avoid

aggressive maneuvers that could lead to collisions, even if it means a slight delay.6.

Flexible Strategy: Adapt strategies based on real-time traffic conditions. Reassess

and choose a safer alternative if a planned action seems unsafe.7. **Immediate Threat

Focus:** Pay special attention to vehicles approaching from behind in your intended

merging path. Adjust your strategy to create a safe gap with these vehicles before

merging.8. **Proximity Awareness:** If a vehicle is within a critical distance behind,

prioritize adjusting speed to ensure a safe merging gap.9. **Cautious Acceleration:**

When a vehicle is directly in front and moving slower, maintain speed or slow down to

allow it to move further away before attempting to merge.By applying these strategies,

you can merge onto the highway more effectively and safely, even when in a hurry.

Car2 (Highway Vehicle) knowledge: Updated Knowledge for Navigating

Highway Merge Junctions 1. **Early Detection and Assessment**: Identify merg-

ing vehicles early, focusing on their speed and proximity. If they are close, prepare

to adjust your speed promptly to facilitate safe merging.2. **Prioritize Safety Over

Speed**: Always prioritize avoiding collisions over maintaining speed. Adjust your

172

speed to ensure safe distances from merging vehicles, even if it causes a slight de-

lay.3. **Dynamic Speed Adjustment**: Be ready to slow down significantly if a

merging vehicle is very close. Avoid abrupt speed increases that could reduce merg-

ing space and lead to collisions.4. **Continuous Monitoring**: Maintain awareness

of the speed and position of nearby vehicles, especially those merging. Be vigilant of

vehicles approaching from behind and to the side.5. **Proactive Space Creation**:

Act promptly to create space for merging vehicles. Adjust your speed early to pre-

vent conflicts and maintain a smooth flow.6. **Anticipate Merging Intentions**: If

a vehicle is close and in a merging lane, anticipate its intention to merge and adjust

your speed or position accordingly to prevent collisions.7. **Balance Urgency with

Caution**: While in a hurry, balance the need for speed with safety. Ensure that any

speed adjustments do not compromise the safety of merging vehicles.8. **Immediate

Response to Close Proximity**: When a merging vehicle is extremely close, prioritize

immediate action to slow down or create space, even if it means temporarily reducing

speed significantly.9. **Evaluate Lane Change Options**: If safe and necessary, con-

sider a temporary lane change to allow merging vehicles to enter your lane smoothly,

while maintaining your original route.10. **Avoid Stagnation**: Ensure that actions

do not cause stagnation or impede traffic flow. Adjust speed dynamically to maintain

progress while ensuring safety.

A.4.8 Overtake (Perception) Communication Protocol by LLM+Debrief,
seed 12, checkpoint-28

Car1 (Overtaking Car)

knowledge: To successfully overtake the stopped broken truck using lane -1,

I will maintain a flexible speed and use my sensors to independently assess the speed

and distance of oncoming traffic in lane -1. The stationary truck will continuously

monitor lane -1 and provide real-time updates, sending a "hold" message if the gap is

not safe. I will only proceed with the overtaking maneuver when both the stationary

truck’s updates and my sensor data confirm a safe gap, at which point the stationary

173

truck will send a "go" message. This ensures alignment and minimizes the risk of

collision. If no safe gap is available, I will maintain my position and communicate

my readiness to adapt speed as necessary, ensuring a coordinated and safe overtaking

process.

cooperative strategy: In the revised cooperative strategy, the stationary

truck in lane 1 will continuously monitor the traffic in lane -1 and provide real-time

updates on the speed and distance of oncoming vehicles. If the gap is not safe for

overtaking, the stationary truck will send a "hold" message to prevent premature

maneuvers. As the overtaking vehicle, I will use my sensors to independently verify the

traffic conditions in lane -1 and maintain a flexible speed, ready to adapt dynamically.

I will only proceed with the overtaking maneuver when both the stationary truck’s

updates and my sensor data confirm a safe gap, at which point the stationary truck

will send a "go" message. This dual verification approach ensures alignment in our

actions, minimizing the risk of collision and avoiding stagnation by allowing me to

adjust my speed based on real-time conditions. If no safe gap is available, I will

maintain my position and communicate my readiness to adapt speed as necessary,

ensuring a coordinated and safe overtaking process.

Truck (Stopped Truck in Lane 1)

knowledge: As the stationary truck in lane 1, my role is to assist the overtak-

ing vehicle by continuously monitoring traffic in the opposite lane (-1) and providing

real-time updates on the speed and distance of oncoming vehicles. If the gap is not

safe for overtaking, I will send a "hold" message to prevent premature maneuvers.

The overtaking vehicle should independently verify the traffic conditions using its

sensors and maintain a flexible speed, ready to adapt dynamically. If both my up-

dates and the overtaking vehicle’s sensor data confirm a safe gap, I will send a "go"

message, allowing the overtaking vehicle to proceed. This dual verification approach

ensures alignment in decision-making, minimizes collision risk, and avoids stagnation

by allowing the overtaking vehicle to adjust its speed based on real-time conditions.

174

cooperative strategy: In our revised cooperative strategy, as the stationary

truck in lane 1, my role is to continuously monitor the traffic in the opposite lane (lane

-1) and provide real-time updates on the speed and distance of oncoming vehicles.

If the gap is not safe for overtaking, I will send a "hold" message to the bypassing

vehicle to prevent premature maneuvers. The bypassing vehicle, meanwhile, should

use its sensors to independently verify the traffic conditions in lane -1 and maintain

a flexible speed, ready to adapt dynamically. If both my updates and the bypassing

vehicle’s sensor data confirm a safe gap, I will send a "go" message, and the bypassing

vehicle should proceed with the overtaking maneuver. This dual verification approach

ensures that both vehicles are aligned in their actions, minimizing the risk of collision

by confirming safety from two perspectives and avoiding stagnation by allowing the

bypassing vehicle to adjust its speed based on real-time conditions. If no safe gap

is available, the bypassing vehicle should maintain its position and communicate

readiness to adapt speed as necessary, ensuring a coordinated and safe overtaking

process.

175

Appendix B

Additional Details on MACTA

This appendix provides supplementary details for Chapter 5. It includes the moti-

vation for studying cache timing attacks, implementation specifics of the proposed

method, environment configurations, and expanded analyses. These analyses encom-

pass both quantitative and qualitative perspectives, evaluation on real hardware, and

detailed comparisons with baseline methods. We also provide insights into the benign

datasets used and implementation details of baseline attackers and detectors.

B.1 Why Study Cache Timing Attacks

CTA are stealthy but powerful. They do not violate any access control poli-

cies enforced by the operating system and low-level hardware and they are shown

to pose serious security concerns in practice. For example, some implementations

of security critical software such as encryption algorithms have a secret dependent

access pattern, and an attacker can use CTA to obtain secret keys (Osvik et al.,

2006; Liu et al., 2015). CTA also enables covert communication channels between

two domains and breaks the existing security isolation mechanism, e.g., sandbox in

javascript (Oren et al., 2015), isolation between processes (Kocher et al., 2019), and

the system privilege levels (Lipp et al., 2018). CTA can also facilitate brute forcing

hash values stealthily without triggering exceptions, which is shown to help break

176

the ARM pointer protection mechanisms (Ravichandran et al., 2022). One of the

important defensive strategies is to detect unique characteristics of memory access

patterns of attacker programs that are different from usual benign ones, as leveraged

by the state-of-the-art cache-timing channel detectors (Yan et al., 2016; Chen and

Venkataramani, 2014; Harris et al., 2019; Mirbagher-Ajorpaz et al., 2020). However,

many new attacks (Briongos et al., 2020; Luo et al., 2023) avoid the characteristics

that the detector uses and it is hard to adapt existing detectors to previously unseen

attacks or access patterns.

B.2 Environment Configurations

Table B.1: Environment hyper-parameters.

Parameter Group Parameter Name Parameter Value

MA-AutoCAT Max Episode Length 64 steps

MA-AutoCAT Observation Window Size for the attacker and the detector 64 steps

MA-AutoCAT Probability between Attack Scenario and Benign Scenario during Training [50%, 50%]

MA-AutoCAT Benign Program Logs (Train) 48 Million Steps

MA-AutoCAT Benign Program Logs (Validation) 4 Million Steps

MA-AutoCAT Benign Program Logs (Test) 40 Million Steps

MA-AutoCAT Attacker Memory Address Range 8-15

MA-AutoCAT Victim Memory Address Range 0-7

Cache Simulator Cache Configuration L1 Cache, 8 set 1 way

Cache Simulator Replacement Policy Least Recently Used (LRU)

Game Mechanism. In MA-AutoCAT, within a fixed-length episode, the attacker

agent can guess the secret address of the victim as many times as possible and get

a reward for every correct guess (successful attack). In the meantime, the detector

agent can monitor the cache access history and interactions of two programs and

decide whether to raise a flag/alarm to terminate the episode to prevent further

information leakage.

Attacker’s Reward Function. The attacker is punished by 0.01 for every time

step, +10 if guess the victim’s secret successfully, -10 if incorrectly. It will get a

177

one-time punishment of 20 if it reaches a timeout without any attack, a one-time

punishment of -10 if identified by detector. The episode length to collect reward is

affected by the detector.

Detector’s Reward Function. The detector can raise a flag to terminate the

episode. If the detector raises a flag in an attack scenario, then the detector receives

a reward for remaining steps [max step - current step]; if the detector raises a flag in

a benign scenario, then it receives a large penalty [5 × max step]. If the detector lets

the episode going, for benign scenario there is no punishment; while the detector gets

-10 every time the attacker attacks successfully.

Attacker’s Action. For each time step, the attacker can choose an action aa ∈
{aaX , aav, aavr, aagY }, where aaX represents access address X, aav represents letting the vic-

tim access a secret-related address, aavr represents letting the victim access a random

address and aagY represents guessing the secret address to be Y .

Detector’s Action. For each time step, the defender can choose ad ∈ {adterm, adcont}
where aterm means terminate the episode and adcont means let the episode keep going.

Attacker’s Observation. The attacker’s observation space includes a history of

attacker actions and memory access latency it receives from the cache simulator.

For each time step, a new step observation (salat, s
a
vt, s

a
act, s

a
step) is appended to the

observation window, where salat ∈ {shit, smiss, sN.A.} represents the access latency,

savt ∈ {st, snt} represents whether to wait for the victim’s action, sact records the

attacker’s current action and sastep is the current time step.

Detector’s Observation. The detector can observe a history window of the mem-

ory access actions of both programs. For each time step, the new observation is

composed of (sdlat, sdprogram, sdset, sdstep), where sdlat ∈ {shit, smiss} represents the access

178

latency (access latency of all programs are visible to the detector), sdprogram ∈ {sa, sb}

indicates the identity of the program, sdset represents the cache set being accessed at

the current step, and sdstep represents the current defender time step.

Benign Programs. The benign programs share the same action space with the

victim and the attackers, and their domain id is randomized per episode. The actions

of benign programs are sampled from pre-collected memory traces of the benign pro-

grams and we map the traces to the cache configuration (8 sets and 1 way) in this

chapter. A detailed introduction to the benign datasets we use and the detectors’

false alarm rate comparison is in Section B.3.

B.3 Benign Dataset

The memory traces of different benign programs are sampled from the Stan-

dard Performance Evaluation Corporation (SPEC) 2017 benchmark suite (Bucek

et al., 2018). Specifically, we run each individual benchmark in the gem5 simulator

(Binkert et al., 2011) and generate log files containing all memory accesses executed

and their corresponding timestamps. To sample typical memory access patterns, we

follow the standard practice in computer architecture studies to skip the first 2 million

operations which represent the warm-up phase of programs, and sample the memory

accesses in the middle of execution by skipping more steps. We collect memory access

traces from the following 10 SPEC benchmarks, of which names are in the form of

(program_id.program_name_speed/rate): 500.perlbench_r, 502.gcc_r, 505.mcf_r,

548.exchange2_r, 549.fotonik3d_r, 602.gcc_s, 607.cactuBSSN_s, 631.deepsjeng_s,

638.imagick_s, and 641.leela_s. Since our benign scenario consists of two benign pro-

grams, we mix two memory traces based on the timestamp in the simulation using

either different benchmarks or identical benchmarks with different starting points.

We prepare each benign trace to have 4 million memory accesses in total. Note that

there can be combinatorically many different traces of two programs, we only select a

179

representative subset of them for the training and evaluation. Finally, we project the

memory access traces onto the valid action space given the current cache configuration

(8-set, 1-way, cache line size of 64 bytes).

We randomly select three programs (500.perlbench_r, 502.gcc_r, 505.mcf_r),

and use different combinations (with replacement and with different skip steps) of

them as training set. For example, the trace file name “500-2M_500-4M” means it con-

tains two perlbench programs sharing the same cache. They start from different times

(skipping the first 2 million memory accesses and skipping the first 4 million memory

accesses, respectively) and continue until there are 4 million memory accesses by either

program. We generate the validation dataset (549.fotonik3d_r, 607.cactuBSSN_s)

and test dataset (548.exchange2_r, 631.deepsjeng_s, 638.imagick_s, and 641.leela_s)

in the same way as the training set.

The ML models (MACTA, IBR-PPO, Cyclone) are trained on the same train-

ing set and tuned on the validation set. In the meantime, CC-Hunter’s threshold is

selected based on the validation set. Since the memory traces can exhibit different

behaviors, we provide our per-trajectory false positive rate estimate in Figure B.1.

All the machine learning models appear to perform better on the test set than the

training set, which indicates a potential distribution shift between the training set and

the test set. CC-Hunter’s false positive rate is too high (ranging from 7.5− 30%) to

be plotted in the figure. In general, MACTA and Cyclone detectors have similar false

positive rate on benign programs. The IBRPPO detector has lower false positive

rates but it also has much lower detection rates. In addition, we closely inspect the

benign traces that cause false positive. We find most of them are variations of the

Prime+Probe attack on subset of cache sets. This is because even though the benign

programs do not have malicious intentions, but they can still generate small pieces of

memory access patterns that happen to be an attack pattern.

180

500-2M_500-4M

502-2M_502-4M

505-2M_505-4M

500-2M_502-2M

500-2M_505-2M

502-2M_505-2M

500-6M_502-6M

500-6M_505-6M

502-6M_505-6M

500-10M_502-10M

500-10M_505-10M

502-10M_505-10M

549-2M_607-2M

548-2M_548-4M

631-2M_631-4M

638-2M_638-4M

641-2M_641-4M

548-2M_631-2M

548-2M_638-2M

548-2M_641-2M

631-2M_638-2M

631-2M_641-2M

638-2M_641-2M
0

1

2

3

4

5

6

7

8

9

10

Fa
ls

e
P

os
iti

ve
 R

at
es

 (%
)

Tr
ai

n
Se

t
Va

l S
et

Te
st

 S
et

16
.7

 %

10
0.

0
%

13
.0

 %

34
.2

 %

15
.4

 %

Cyclone(One-Class SVM)
Cyclone(SVM)
IBRPPO Detector
MACTA Detector

Figure B.1: False positive rates on different datasets. We report the per-dataset mean
false positive rate for three models. CC-Hunter(threshold=0.45)’s false positive rates are
too high to be included here.

B.4 Trajectory Analysis

Figure B.3 illustrates different attackers’ attack sequences given a fixed secret

bit. Here, we use victim secret=5 as an example. The top row shows a sampled

pattern of benign programs. In that case, the two programs act independently and

alter the access to the cache frequently. The Prime+Probe attacker causes cache

contention by accessing the cache frequently, and only invokes the victim to access

the cache when needed. Once contention with the victim in one cache set is observed

(i.e., a cache miss after the same address is accessed by the attacker), the attacker

will make a guess without more memory accesses. The IBR-PPO attacker takes a

similar strategy as AutoCAT’s, but it learns to insert some extra victim invocation

steps to confuse the detector. The issue with the extra invocation strategy is that

the victim only accesses its secret bit, which can be easily captured by the detector.

The MACTA attacker, however, learns more advanced strategies. It learns to invoke

181

0 20 40 60 80 100
False Positive

0

20

40

60

80

100
Re

ca
ll

MACTA
IBR-PPO
CC-Hunter
Cyclone(SVM)
Cyclone(One-Class SVM)

0 20 40 60 80 100
False Positive

0

20

40

60

80

100

Re
ca

ll

MACTA
IBR-PPO
CC-Hunter
Cyclone(SVM)
Cyclone(One-Class SVM)

Figure B.2: The relative positions of all detectors’ performance on the ROC figure. The
recall is shown for the Prime+Probe attacks (Left) and the AutoCAT attacks (Right).
The false positive rate is measured on the proposed test benign dataset. Here, Cyclone is
trained on Prime+Probe attack sequences. But we did not provide the Prime+Probe attack
sequences to MACTA detector explicitly.

random victim accesses to alter its behavior to be more similar to benign programs.

Note that invoking random accesses from a victim can cause noise in the attacker’s

latency observation and make the steps needed for a successful attack longer. This

means that to evade the MACTA detector, just inserting some extra victim invocation

steps is far from enough. The attacker has to take a risk to invoke random accesses

from a victim instead because the “easiest" policy space has been exhausted.

B.5 Real Hardware Analysis

Table B.2: Attack evaluation on commercial processors. We report the attack correct
rates of MACTA attack sequences on three commercial Intel processors for 10,000 episodes.
MACTA attackers achieve a > 99.9% correct rate in the simulator, and still > 99% on real
hardware.

CPU Cache Level #Sets #Ways Attack Correct Rate ↑

i7-6700 (SkyLake) L3 8 1(partitioned) 100.00%
i7-7700k (KabyLake) L3 8 1(partitioned) 99.97%

182

Benign
2

7 5

7

7

5 5 7

5 5

7

5

3 7 5

7

1 6 7

7

3Program 2

Program 1

Time Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 …

Cache Miss Observed by
the Attacker

Cache Hit Observed
by the Attacker

Victim Random Access
Not Observable to the Attacker

Cache Set Access Not
Observable to the Attacker3333

1 6 3 0 5 2 7 3 1 2 0

5

467145230Prime + Probe
Victim

Attacker

Correct Guess 5Victim Secret 5 Victim Reset 3

73 0 4 1 2 3 2 5 5 3 7 0 4 1 2 6AutoCAT
5 5 5 3Victim

Attacker

Victim Secret 5 Correct Guess 5 Victim Reset 3

3 7 7 3 4 0 6 0 4 2 5 1 5 3 2IBR-PPO
5 5 5 35

0

Victim

Attacker

Correct Guess 5 Victim Reset 3Victim Secret 5

Correct Guess 3

4MACTA
3Victim

Attacker

Correct Guess 5 Victim Reset 3

Victim Random Access

5

4

3 05 5

5 35

3

5

3 3

2

3

5

3

4 3

Figure B.3: Example trajectories of different attackers and benign agents in a 8-set
1-way L1 cache. The number indicates the cache set being accessed. Red and green boxes
show the observation by the attacker. The latency of other programs (i.e., victim or benign)
cannot be observed by the attacker, but they can be observed by the detectors. The program
IDs are randomized during training, and the attacker can be any of the two programs in the
system. The cache is initialized with random states.

We evaluated the effectiveness of the attack sequences produced by MACTA

attackers on real hardware by running them on two commercial processors through

CacheQuery (Vila et al., 2020). The attack sequences are generated from a MACTA

attacker that is trained using a simulated environment for an 8-set 1-way cache con-

figuration. Then, the attack sequences were performed on real hardware to obtain the

attack correct rate. Table B.2 demonstrates the attacker policy from the simulator

can be transferred to real hardware with negligible discrepancy.

183

B.6 Model Architectures

In Section 5.4.4, we compared three different neural network architectures:

Transformers (Vaswani et al., 2017), LSTM (Hochreiter and Schmidhuber, 1997),

and MLP. All of the methods are controlled at the same scale of parameters and

trained with PPO (Schulman et al., 2017) without dual-clip (Ye et al., 2020) on two

different machines. The details about the model architectures are listed below.

Transformer. In our experiments, all the policies use an 8-head 1-encoder-

layer Transformer with dmodel = 128 and dfeedforward = 2048. For the model architec-

ture study, we study the changes in the number of heads in the multi-head attention

mechanism, and the number of Transformer Encoder layers. Similar to Luo et al.

(2023), we apply an average-pooling to reduce the step dimension.

LSTM. We employed a 1-layer LSTM with hidden dimension of 256. The

input to the LSTM is the embedding of the pre-padding history of the observation.

We concatenate the hidden and cell states of the last step and use it as the sequence

embedding.

MLP. The MLP model we used directly feeds the input embeddings into 4

pre-activation residual blocks (He et al., 2016b;a) with hidden dimension 128. Each

residual block is composed of 2 ReLU-Linear layers with a residual connection.

We obverse that the MLP model fails even when tested on multiple differ-

ent machines while Transformer and LSTM models both work. The learning speed

of Transformer and LSTM models can be different. Our hypothesis is that the

CPU/GPU configurations of different machines may affect the policy lag (Petrenko

et al., 2020) of Asynchronous PPO training, which may lead to different learning

speed for different models.

184

B.7 Algorithm and Training Hyper-parameters

The MACTA algorithm is explained in Algorithm 3, and detailed training hy-

perparameters can be found in Table B.3. In MACTA, the policy pool is created by

sampling a new model to do batch actions per step. It is an infrastructure implemen-

tation to produce faster sampling speed, so it is not strictly a per-step sampling, but

it is per-step sampling considering a large amount of data. Additionally, we are ex-

ploring the per-trajectory policy sampling because it has nice theoretical properties.

Nevertheless, it needs further infrastructure support.

Algorithm 3 MACTA
1: Initialize Number of Fictitious Play Iterations I, Attacker Policy Pool PA, De-

tector Policy Pool PD, Number of Epoch per Fictitious Play Iteration E, Add
a policy to Pool per N epochs. PPO the Proximal Policy Optimization. U the
uniform random sampling of policies per step. i← 0, j ← 0, k ← 0

2: while i < I do
3: j ← 0
4: while j < E do
5: πAj=PPO(U(PD)) ▷ Train attacker policy against the pool of the detectors
6: if j mod N − 1==0 then
7: PA ← PA ∪ πAj ▷ Add an attacker checkpoint to the attacker pool
8: end if
9: j ← j + 1

10: end while
11: j ← 0
12: while j < E do
13: πDj=PPO(U(PA)) ▷ Train detector policy against the pool of the attackers
14: if j mod N − 1==0 then
15: PD ← PD ∪ πDj ▷ Add a detector checkpoint to the detector pool
16: end if
17: j ← j + 1
18: end while
19: end while
20: return πA, πD ▷ return the last policy of attacker and detector

185

Table B.3: Training hyper-parameters for MACTA.

Parameter Group Parameter Name Parameter Value

Fictitious Play Fictitious Iterations 18 iterations

Fictitious Play Epochs per Iteration per Agent 50 epochs

Fictitious Play Training Steps per Epoch 3000 steps

Fictitious Play Frequency of Adding one Policy to Pool 10 epochs

Computing Resource Number of Sampling Actors 72 Actors

Computing Resource Sampling Instance per Worker 3 Actors / Worker

Computing Resource Remote Model Push Frequency 10 steps

Computing Resource GPU Information 4 Nvidia Tesla V100 16G / 32G

Computing Resource CPU Information 80 Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

Proximal Policy Optimization Replay Buffer Size 262144

Proximal Policy Optimization Training Batch Size 512

Proximal Policy Optimization Learning Rate 1e-4

Proximal Policy Optimization Entropy Coefficient 0.03

Proximal Policy Optimization Discount Factor γ 0.99

Proximal Policy Optimization Max Gradient Norm 1.0

Proximal Policy Optimization GAE λ 0.95

Proximal Policy Optimization Policy Ratio Clipping ϵ 0.2

Proximal Policy Optimization Value Clipping ϵ 0.2

Proximal Policy Optimization Value Loss Coefficient 0.5

Proximal Policy Optimization Dual-Clip Threshold 3.0

Model Architecture Number of Transformer Encoder Layers 1

Model Architecture Transformer d_model 128

Model Architecture Transformer nhead 8

Model Architecture Transformer dim_feedforward 2048

Model Architecture Transformer dropout 0.0

B.8 Heuristic Cache Timing Attacks and Detectors

B.8.1 Heuristic Attacker Algorithms

Prime+Probe (Algorithm 4) Osvik et al. (2006). First, in the prime phase, the

attacker fills the cache set with its address value (lines 3) in a randomized way, then

waits for the victim to access the cache set. Next, the victim accesses one of the

cache sets, then replaces the loaded address value with its address (lines 5). Lastly, in

the probe phase, the attacker accesses the cache sets again in a random permutation

order, then measures the cache latency to load each set of the primed address value

(lines 7 to 8). In a cache set accessed by the victim, the attacker observes increased

186

latency (cache miss) and makes a guess.

Algorithm 4 Prime+Probe Attack
1: step← step+ 1
2: if step < len(attacker_address_range) then
3: action = prime_address(step, cache_size)▷ attacker fills cache by attacker’s

address
4: else if step = len(attacker_address_range) then
5: action = trigger_victim(step) ▷ victim accesses a cache and fills its own

address
6: else
7: action = probe_address(step, cache_size) ▷ attacker access caches again
8: measure latency(action)
9: end if

10: if latency = 1 then ▷ attacker observes for any cache miss
11: action = guess(action, cache_size) ▷ attacker makes a guess on a victim’s

secret address
12: end if
13: Return action

B.8.2 Detector Algorithms

CC-Hunter Chen and Venkataramani (2014). Cache timing channels rely on the

latency of events to perform timing modulation. To send information, two processes

(i.e., the trojan and the spy) generate a sufficient number of alternating conflict events

(cache misses) to allow the adversary to decode the transmitted bit based on the

average memory access times (hit/miss). Those behaviors show periodic, oscillating

patterns of conflicts between the two processes. Therefore, autocorrelation is used

to identify those patterns. Autocorrelation is the correlation coefficient of the signal

with a time-lagged version of itself, along with measuring the event train X, as a

variable at a time instance of t. Two cases of conflict miss, i.e., either the victim

eviting the attacker’s cache line or the attacker evicting the victim’s cache line, are

considered for the event trains. For example, we can check the autocorrelation Cp at

187

a time lag p, which is expressed as:

Cp =

∑n−p
i=0

[(
Xi − X̄

) (
Xi+p − X̄

)]∑n
i=0

(
Xi − X̄

)2
If there exists a time lag p which 1 ≤ p ≤ P , where P is a predefined parameter such

that makes Cp larger than a threshold value, then it is assumed as an attack.

We tune the threshold to be p = 0.45 on our validation set, and this threshold

yields a 7.5% false alarm rate and a 38% detection rate on Prime+Probe. However,

this threshold fails to generalize to the test set, giving us a 27% average false positive

rate, as reported in this chapter. The main issue with applying CC-Hunter to our

environment is that our episode length is short, and the cache is initialized with

random loads after resetting. As a result, even attackers’ latency histories can have

low auto-correlations.

Cyclone Harris et al. (2019). The concept of cyclic interference is commonly found

in all known cache contention side-channel attacks and has been used for detecting

those attack patterns. Interference occurs from the attacker to the victim process

or vice versa, considered directional, and affects the behavior of microarchitecture in

a disruptive manner. The cyclic interference can be noted as (a ⇝ b ⇝ a), where

interference (a ⇝ b) is followed by (b ⇝ a). However, interference including a third

party between attacker and victim, like (a ⇝ b ⇝ c), is not considered as cyclic

interference. To distinguish attack and benign patterns, Cyclone uses a one-class

support vector machine (One-Class SVM). In our experiments, however, we found

that the one-class SVM is not effective in detecting our Prime+Probe implementation

and has a high false positive rate under our testing configuration. Consequently, we

also experimented with an SVM trained to classify Prime+Probe attack and benign

traces, as the Cyclone paper suggests the feature can be used for other classifiers.

To extract the programs’ cyclic features, we use 8 buckets and an observation

window of 17 steps (which is the same as Prime+Probe’s frequency). We train both

188

1

1

1

2

1 1

2

2

2

1

1 3

2 1

2

1

2

(a)
Prime+Probe

(b)
AutoCAT

(c)
IBR-PPO

(d)
MACTA

14

14

14

6

1

1 1 2 2

(e) 631-2M
631-4M+31

(f) 631-2M
631-4M

(g) 502-2M
505-2M

(h) 549-2M
607-2M

Figure B.4: Example learned Cyclone features for various scenarios: (a, b, c, d)
represent typical features when attackers interact with a victim; (e, f, g, h) depict typical
features resulting from interactions between benign programs. The feature value in the grey
areas is 0, and the intensity of the blue color indicates the frequency of cyclic inference,
with darker shades representing more frequent occurrences. (e) illustrates the interaction
between program 631.deepsjeng_s starting at 2 million (M) steps and the same program at
4M+31 steps. (f) demonstrates a trace of 631.deepsjeng_s self-mix from the test set, (g)
shows a trace from the training set, and (h) presents a sample trace from the validation set.
Typical test set features are similar to those of the train and validation set.

Cyclone (One-Class SVM) and Cyclone (SVM) models with Gaussian kernels using

24,000 normalized train samples until convergence. For Cyclone (One-Class SVM),

we choose the upper bound on the fraction of training errors and a lower bound of the

fraction of support vectors to be 1%, with all training data generated from the benign

(DBB) scenario. For Cyclone (SVM), the regularization coefficient C is set to 100,

with 50% of the train data from benign scenarios, and 50% of them from malicious

(DAV) scenario.

We observed that Cyclone (One-Class SVM) fails to detect Prime+Probe at-

tacks and exhibits high false positive rates on datasets where two programs execute

identical tasks. This inability to detect Prime+Probe is primarily due to the low

bandwidth of the implemented attack. Regarding the elevated false positive rates,

several factors contribute to this issue. One reason is that the cache configuration and

system setting we employ could potentially bring high cyclic behaviors even between

two benign programs. In addition, we discovered that when two benign programs with

periodic memory access patterns are mixed, the difference in the starting time of the

two programs could significantly impact the cyclic behaviors between the programs.

189

Notably, for 631-2M_631-4M in the test set, Cyclone (One-Class SVM) exhibits a

100% false alarm rate (Figure B.4(f)); however, if we shift the start time of the pro-

gram, the false alarm rate decreases to 0% (Figure B.4(e)). Cyclone (One-Class SVM)

also demonstrates fluctuations with the program start time on the 641 self-mix but is

generally more stable on other program combinations. In contrast, we found that the

MACTA detector and Cyclone (SVM) are not sensitive to the program start-time

offsets or combinations of programs, consistently showing low false alarm rates across

various test sets and offsets. For fair comparisons, we report the statistics of all meth-

ods on the same test set without counterfactual dataset selection, but we encourage

the readers to be mindful of the potential bias.

190

Appendix C

Additional Details on L-BRDiv

This appendix provides supplementary information for Chapter 6, including imple-

mentation details, experimental setups, and extended analyses that support the eval-

uation of the L-BRDiv framework. We begin by describing the construction of

heuristic-based teammate policies used for evaluating ad hoc team (AHT) perfor-

mance across different environments. We then present a mathematical analysis il-

lustrating failure cases of existing diversity-driven methods (BRDiv and LIPO) in

discovering the full maximal covering set (MCS) of policies. This analysis highlights

how optimizing their diversity metrics can lead to suboptimal coverage and poor

generalization in AHT settings.

We further explore the behavior of L-BRDiv’s Lagrange multipliers, showing

how they evolve during training to enforce the optimization constraints. In addition,

we provide detailed hyperparameter settings for both teammate generation and AHT

training, ensuring reproducibility and fair comparisons with baseline methods. These

details collectively support the robustness and effectiveness of L-BRDiv in generating

diverse and strategically relevant teammate policies for ad hoc teamwork.

191

C.1 Teammate Policies for AHT Evaluation

We outline the different types of teammate policies in the set of teammates

we use for AHT evaluation, Πeval. For each environment, teammate policies in Πeval

are based on simple heuristics. Details of heuristics used for each environment are

outlined in the following sections.

C.1.1 Repeated Matrix Game

Since the Repeated Matrix Game is a simple environment without any states,

we only implemented six simple heuristics which details are provided below:

• H1. Agents that follow this heuristic will always choose the first action.

• H2. This heuristic will get an agent to always choose the second action.

• H3. Agents using this heuristic will always choose the third action.

• H4. Unlike H1-H3, this heuristic gives agents a policy that chooses the first,

second, and third action with probabilities of 0.7, 0.15, and 0.15 respectively.

• H5. This is a policy that chooses the first, second, and third action with

probabilities of 0.15, 0.7, and 0.15 respectively.

• H6. Agents following this heuristic will choose the third action 70% of the

time. Meanwhile, it is also equally likely to choose between the first and second

actions.

C.1.2 Cooperative Reaching and Weighted Cooperative Reaching

For the Cooperative Reaching and Weighted Cooperative Reaching environ-

ment, we implement 15 types of teammate heuristics whose behaviour are detailed

below:

192

• H1. H1 controls an agent to always move to the closest corner cell from its

initial location.

• H2. This heuristic moves an agent towards the furthest corner cell from its the

agent’s initial location at the beginning of the episode.

• H3. H3 controls an agent to move towards the closest corner cell between corner

cells A and B.

• H4. Based on the agent’s initial location at the beginning of an episode, H4

will move agents towards the furthest cell between cells A and B.

• H5. H5 moves an agent towards the closest cell between cells C and D.

• H6. Depending on the agent’s position at the beginning of an episode, H6

controls the agent to move towards the furthest cell between cells C and D.

• H7. At the beginning of each interaction, H7 randomly picks a destination

cell between A, B, C, and D with equal probability. For the remainder of each

episode, the agent will be controlled to move towards the destination cell.

• H8-H11. H8-H11 move agents towards corner cells A-D respectively.

• H12. H12 moves an agent towards corner cell A with a 55% chance. Meanwhile,

the other corner cells are equally likely to be chosen as destination cells.

• H13. H13 moves an agent towards corner cells A, B, C, and D with a 15%,

55%, 15%, and 15% chance respectively.

• H14. H14 moves an agent towards corner cells A, B, C, and D with a 15%,

15%, 55%, and 15% chance respectively.

• H15. H15 moves an agent towards corner cell D 55% of the time. Meanwhile,

the remaining corner cells are equally likely to be chosen as destination cells.

193

C.1.3 Level-based Foraging

Experiments in the Level-based Foraging environment evaluate AHT agents

against Πeval consisting of 8 heuristic types defined below:

• H1. Agents under H1 will move towards the closest item from its current

location and collect it. This process is repeated until no item is left.

• H2. At the beginning of an episode, agents under heuristic H2 will move towards

the furthest object from its location and collect it. Every time its targeted

item is collected, the agent will then move to collect the remaining item whose

location is furthest from the agent’s current location. This process is repeated

until no item remains.

• H3-H8. H3-H8 each corresponds to a heuristic that collects items following

one of the six possible permutations of collecting the three items available in

the environment.

C.2 Analyzing Baseline Failure in Repeated Matrix Game &
Weighted Cooperative Reaching

In this section, we mathematically demonstrate that no constant and uniform

α > 0 can make BRDiv or LIPO identify all policies in MCS(E) for the Repeated Ma-

trix Game and Weighted Cooperative Reaching environment. Section C.2.1 details

our argument regarding the baselines’ failure in the repeated matrix game. Mean-

while, the same argument for the Weighted Cooperative Reaching environment is

provided in Section C.2.2.

C.2.1 Repeated Matrix Game

Based on the payoff matrix provided in Figure 6.3a, it is clear that the MCS of

the Repeated Matrix Game environment consists of the three deterministic policies

194

π(A) π(B) π(C)
1 1 0 0
2 0 1 0
3 0 1 0

(a) A set of policies that appear more optimal than MCS(E) for BRDiv and LIPO.

10 0 0
0 6 6
0 6 6

(b) Cross-play matrix for the policies discovered in Figure C.1a.

Figure C.1: An example failure mode of BRDiv and LIPO. The above figures
provide an example set of policies that will appear to be more optimal than MCS(E) if we
optimize the diversity metric used by LIPO and BRDiv.

displayed in Figure 6.5a. Ideally, L-BRDiv, BRDiv, and LIPO should all produce

MCSest(E) and Πtrain containing policies displayed in Figure 6.5a. However, we show

it is impossible to find α > 0 that can make BRDiv and LIPO discover MCSest(E)

for this environment and generate a set of teammate policies to maximize the AHT

agent’s robustness.

LIPO and BRDiv fail in this simple environment because another set of policies

produces a higher adversarial diversity metric compared to the ideal MCSest(E) and

Πtrain for any α > 0. An example set of policies producing a higher adversarial

diversity metric than the ideal MCSest(E) is displayed in Figure C.1. Compared to

discovering MCS(E) as MCSest(E) and Πtrain that results in a cross-play matrix like

the payoff matrix, the cross-play matrix from discovering policies in Figure C.1a has

a lower sum of non-diagonal elements while having the same trace.

195

We now evaluate the value of LIPO and BRDiv’s optimized diversity metric

when both MCSest(E) and Πtrain equals MCS(E) and when it instead discovers the

set of policies displayed in Figure C.1a, which we denote as Πalt. Note that the

adversarial diversity metric maximized by BRDiv, BRDiv({πi}Ki=1,{π−i}Ki=1), can be

expressed as: ∑
i∈{1,...,K}

Es0∼p0 [Ri,−i(Ht)] +∑
i,j∈{1,...,K}

i ̸=j

α (Es0∼p0 [Ri,−i(Ht)−Rj,−i(Ht)])+

∑
i,j∈{1,...,K}

i ̸=j

α (Es0∼p0 [Ri,−i(Ht)−Ri,−j(Ht)]) , (C.1)

for some α > 0. Meanwhile, the adversarial diversity metric optimized by LIPO,

LIPO({πi}Ki=1,{π−i}Ki=1), is given by the following expression:∑
i∈{1,...,K}

Es0∼p0 [Ri,−i(Ht)]−∑
i,j∈{1,...,K}

i ̸=j

α (Es0∼p0 [Rj,−i(Ht) + Ri,−j(Ht)]) , (C.2)

assuming α > 0. For α > 0, the resulting BRDiv and LIPO objective for both sets of

policies are provided in the following table: From Table C.1, it is clear that discovering

Table C.1: Value of LIPO and BRDiv objectives for the Repeated Matrix Game.
The expressions that evaluate LIPO and BRDiv’s optimized diversity metric for the Re-
peated Matrix Game are provided below. No α > 0 enables MCS(E) to have higher diversity
objectives than Πalt.

Method MCS(E) Πalt

BRDiv 22+56α 22+64α
LIPO 22-16α 22-12α

Πalt will always produce higher diversity metrics for BRDiv and LIPO. It is then

impossible to discover MCS(E) while optimizing both of these objectives. Its inability

196

π(A) π(B) π(C) π(D)
1 1 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 1 0 0

(a) Denoting π(X) as the probability of ending up in a corner cell having an ID of X, the above
set of policies produce higher diversity metrics than MCS(E) in the Weighted Cooperative Reaching
environment for BRDiv and LIPO.

10 10 0 0
10 10 0 0
0 0 10 10
0 0 10 10

(b) Cross-play matrix between policies discovered in Figure C.2a.

Figure C.2: Another example failure mode of BRDiv and LIPO in Weighted
Cooperative Reaching. By not discovering policies that move towards corner cells C and
D, BRDiv and LIPO can achieve a higher diversity metric than when discovering MCS(E).

to discover some members of MCS(E) and instead discover other members twice

eventually leads LIPO and BRDiv towards producing AHT agents with significantly

worse returns than L-BRDiv.

C.2.2 Weighted Cooperative Reaching

To show the shortcomings of LIPO and BRDiv in Weighted Cooperative

Reaching, we also construct a set of policies that will produce higher diversity metrics

for both BRDiv and LIPO. This set of policies that appears more desirable for LIPO

and BRDiv than MCS(E) is denoted by Πalt and is visualized by Figure C.2. Instead

197

of discovering four policies moving towards different corner cells in the environment,

Πalt discovers policies moving towards cells A and B twice. Discovering Πalt and using

it as MCSest(E) and Πtrain results in a cross-play matrix displayed in Figure C.2b.

Compared to MCS(E) that produces a cross-play matrix that is the same as

Figure 6.3c, the cross-play matrix from Πalt has a higher sum of self-play returns and

a lower sum of cross-play returns. As a result, no α > 0 should make MCS(E) appear

more desirable to LIPO and BRDiv. We show the expressions evaluating LIPO and

BRDiv’s diversity metrics for MCS(E) and Πalt in Table C.2. Since a set of policies

like Πalt that does not discover all members of MCS(E) appear more preferable than

MCS(E), LIPO and BRDiv end up yielding AHT agents that cannot robustly interact

with teammate policies whose best-response policies are not discovered.

Table C.2: Value of LIPO and BRDiv objectives for Weighted Cooperative
Reaching. The expressions that evaluate LIPO and BRDiv’s optimized diversity metric
for Weighted Cooperative Reaching are provided below. No α > 0 enables MCS(E) to have
higher diversity objectives than Πalt.

Method MCS(E) Πalt

BRDiv 36+120α 40+160α
LIPO 36-48α 40-40α

C.3 Analyzing the Lagrange Multipliers of L-BRDiv

The role of the Lagrange multipliers in the learning process undergone by

L-BRDiv is highlighted in Figure C.3. Since the randomly initialized teammate poli-

cies cannot fulfill the upheld constraints in the beginning, optimizing Equation 6.12

encourages the increase of the Lagrange multipliers’ values. The increasingly large

Lagrange multipliers then force the learned policies to start fulfilling these constraints.

Once policies learn to fulfil a constraint, the Lagrange multiplier associated with that

constraint will decrease towards zero. At the end of the optimization process, we

see that all Lagrange multipliers eventually converge to zero after all constraints are

fulfilled.

198

0 1000 2000 3000 4000 5000 6000 7000
Total Updates

0.0

0.2

0.4

0.6

0.8

1.0
La

gr
an

ge
 M

ul
tip

lie
r M

ea
n

N
or

m

Lagrange Multiplier Values in Repeated Matrix Game

(a) Repeated Matrix
Game.

0 500 1000 1500 2000 2500
Total Updates

0

1

2

3

4

5

La
gr

an
ge

 M
ul

tip
lie

r M
ea

n
N

or
m

Lagrange Multiplier Values in Cooperative Reaching

(b) Coop Reaching.

0 500 1000 1500 2000 2500
Total Updates

0

20

40

60

80

100

La
gr

an
ge

 M
ul

tip
lie

r M
ea

n
N

or
m

Lagrange Multiplier Values in Weighted Coop Reaching

(c) Weighted Coop
Reaching.

0 2500 5000 7500 10000 12500 15000 17500
Total Updates

0

2

4

6

8

10

12

14

La
gr

an
ge

 M
ul

tip
lie

r M
ea

n
N

or
m

Lagrange Multiplier Values in LBF

(d) LBF.

Figure C.3: The changing values of L-BRDiv’s Lagrange multipliers. Figure C.3a,
Figure C.3b, Figure C.3c, and Figure C.3d all show how L-BRDiv’s Lagrange multipliers
change over time. Since a randomly initialized policy will not fulfill the constraints upheld
by L-BRDiv, the Lagrange multipliers will initially increase their value to add more pressure
to the policies to fulfill the constraints. Finally, the Lagrange multipliers will decrease to
zero once constraints are fulfilled.

Table C.3: Hyperparameter values for L-BRDiv’s Experiments. The specific hyper-
parameter values used in our teammate generation experiments in Repeated Matrix Games
(RPM), Cooperative Reaching (CR), Weighted Cooperative Reaching (WCR), and Level-
based Foraging (LBF) are provided below.

RPM CR WCR LBF
K 3 4 4 6
λπ 10−3 10−4 10−4 10−4

λV 10−3 10−4 10−4 10−4

λα 0.05 0.5 0.5 0.05
γ 0.99 0.99 0.99 0.99
T 106 3.2×107 3.2×107 2.4×108

Nthreads 40 160 160 160
Tupdate 2 8 8 8
Tlagrange 10 10 10 10

τ 1 0.2 0.5 0.1
went 10−3 5×10−3 5×10−3 8×10−4

We ensure a fair comparison between L-BRDiv and the baseline methods by

using the same hyperparameter values and network architecture. However, note that

BRDiv and LIPO still require us to set α to a value that facilitates the generation of

Πtrain that facilitates the training of robust AHT agents. Since teammate generation

and AHT training is computationally expensive , we follow these steps to tune α:

199

Table C.4: Network size for L-BRDiv’s experiments. The size of models in our
experiments in the Repeated Matrix Games (RPM), Cooperative Reaching (CR), Weighted
Cooperative Reaching (WCR), and Level-based Foraging (LBF) environment are detailed
below.

RPM CR WCR LBF
πi
θ (Layer 1) 32 128 128 128
πi
θ (Layer 2) 32 256 256 128
πi
θ (Layer 3) N/A 256 256 N/A
πi
θ (Layer 4) N/A 128 128 N/A

Vθc (Layer 1) 32 128 128 128
Vθc (Layer 2) 32 256 256 128
Vθc (Layer 3) N/A 256 256 N/A
Vθc (Layer 4) N/A 128 128 N/A

1. We initially run LIPO and BRDiv with α ∈ {0.1, 0.5, 1, 5, 10}. Two experiment

runs are done for each α.

2. We look at the generated teammates and see which tested α discover more

members of MCS(E).

3. Based on the α producing the best estimate of MCS(E), we then do slight tuning

to α by finding values close to α producing the best approximate to MCS(E).

Following this process, the final hyperparameter value that we end up using for LIPO

and BRDiv is summarized in Table C.5. In alignment with the findings from Charakorn

et al. (2023), note that LIPO ends up using small α values since larger α results in

incompetent policies that cannot even achieve high returns against their intended

partner in self-play. The only exception is Cooperative Reaching where MCS(E) con-

sists of policies whose cross-play returns are zero, which enables the use of a large

α. This emergence of incompetent policies is a natural consequence of optimizing

Equation C.2, which cross-play return term’s magnitude can overwhelm the self-play

return term for large enough α.

200

Table C.5: α for baseline methods. The value of α used by baseline methods in their
respective objectives for the Repeated Matrix Games (RPM), Cooperative Reaching (CR),
Weighted Cooperative Reaching (WCR), and Level-based Foraging (LBF) environment are
detailed below.

RPM CR WCR LBF
LIPO 0.5 8 0.25 0.08
BRDiv 1 10 1 0.4

C.4 AHT Experiment Hyperparameters

As we mention in Section 6.4.3, we use the RL2 algorithm to train AHT agents

based on the set of teammates generated by each compared method. The hyperpa-

rameters of the RL2 algorithm are listed below:

• λπ: Policy learning rate.

• λV : Critic learning rate.

• γ: Discount rate.

• T : Number of experiences used in learning.

• Nthreads: Number of parallel threads for data collection during training.

• Tupdate: Number of timesteps between update.

• went: Entropy weight term to encourage exploration.

• Lrep: The length of representation vectors to characterize teammates.

For each environment used in our experiments, hyperparameter values that we use in

each environment is provided in Table C.6.

Apart from these hyperparameters, our policy and critic networks have a sim-

ilar architecture to the teammate generation process. The only difference is that we

use an LSTM layer as our final layer. We use the LSTM layer to enable agents to

201

Table C.6: Hyperparameter values for L-BRDiv’s Experiments. The specific hy-
perparameter values used in our Repeated Matrix Games (RPM), Cooperative Reaching
(CR), Weighted Cooperative Reaching (WCR), and Level-based Foraging (LBF) environ-
ments are provided below.

RPM CR WCR LBF
λπ 10−4 10−4 10−4 10−4

λV 10−4 10−4 10−4 10−4

γ 0.99 0.99 0.99 0.99
T 106 1.2×107 1.2×107 4.8×107

Nthreads 10 16 16 16
Tupdate 2 8 8 8
went 10−4 2.5×10−4 2.5×10−4 8×10−4

Lrep 16 32 32 64

process the previous sequence of observations and experienced rewards to model the

type of teammates the AHT agent is interacting with.

202

Appendix D

Additional Details on Traffic Conges-
tion Reduction

This appendix provides supplementary implementation details for the experiments

presented in Chapter 7, which investigates centralized and distributed learning ap-

proaches for reducing traffic congestion using reinforcement learning. Specifically,

we detail the full set of hyperparameters used for training both centralized and dis-

tributed agents from scratch, as well as the configuration for simulating human-like

driving behavior via proxy controllers.

A Hyper-parameters

A.1 Centralized Agent Training

Table D.1 lists the hyperparameters used to train centralized agents from

scratch using Proximal Policy Optimization (PPO). These settings were employed

in the experiments for the Simple Merge and I-696 Merge scenarios, corresponding to

results reported in Table 7.1 and Table 7.2, respectively. The centralized controller

operates with full access to the joint observation space and takes a global action across

all controlled vehicles.

203

Table D.1: Hyper-parameters for training centralized agents from scratch

Parameter Value

Algorithm Proximal Policy Optimization (PPO)
Horizon 2000

Simulation Time Stepsize 0.5
Optimizer Stochastic Gradient Descent

Learning Rate 5× 10−4

Discount Factor (γ) 0.99
GAE Lambda (λ) 0.97

Actor Critic True
Value Function Clip Parameter 106

Number of SGD Update per Iteration 10
Model hiddens [100,50,25]
Clip Parameter 0.3

Entropy Coefficient 0
Sgd Minibatch size 128
Train Batch Size 40000

Value Function Share Layers False
KL Coefficient 0.2

KL Target 0.01
Max Acceleration 2.6
Max Deceleration 4.5
Training Iterations 500

Number of Rollouts per Iteration 20

A.2 Distributed Agent Training

Table D.2 summarizes the hyperparameters used to train distributed agents in

a decentralized setting, where each agent operates based on its local observations. The

agents are jointly optimized using PPO with synchronized updates. These settings

were applied in experiments investigating the effects of feature augmentation and

reward shaping, as reported in Table 7.3 and Table 7.4.

204

Table D.2: Hyper-parameters for training distributed agents from scratch

Parameter Value

Algorithm Proximal Policy Optimization (PPO)
Horizon 2000

Simulation Time Stepsize 0.5
Optimizer Stochastic Gradient Descent

Learning Rate piece-wise linearly decreasing starting from 5× 10−4 (From scratch)
Discount Factor (γ) 0.998
GAE Lambda (λ) 0.95

Actor Critic True
Value Function Clip Parameter 108

Number of SGD Update per Iteration 10
Model hiddens [100,50,25]
Clip Parameter 0.2

Entropy Coefficient 10−3

Sgd Minibatch size 4096
Train Batch Size 60000

Value Function Share Layers True
Value Loss Coefficient 0.5

KL Coefficient 0.01
KL Target 0.01

Max Acceleration 2.6
Max Deceleration 4.5
Training Iterations 500

Number of Rollouts per Iteration 30

A.3 Human Vehicles

To simulate background traffic, we employ a human-proxy controller based on

the default Intelligent Driver Model (IDM) provided by SUMO. The hyperparameters

for this controller are provided in Table D.3. These settings aim to approximate

realistic driving behavior and are held fixed across all training and evaluation episodes

involving mixed-autonomy scenarios.

Table D.3: Hyper-parameters for human-proxy controller

Parameter Value

Controller Sumo Default Controller(IDM)
Max Acceleration 2.6
Max Deceleration 4.5

Expected Time Headway 1 second

205

References

206

Works Cited

J. P. Agapiou, A. S. Vezhnevets, E. A. Duéñez-Guzmán, J. Matyas, Y. Mao,

P. Sunehag, R. Köster, U. Madhushani, K. Kopparapu, R. Comanescu, et al.

Melting pot 2.0. arXiv preprint arXiv:2211.13746, 2022.

C. Angliss, J. Cui, J. Hu, A. Rahman, and P. Stone. A benchmark for general-

izing across diverse team strategies in competitive pok\’emon. arXiv preprint

arXiv:2506.10326, 2025.

A. H. Anwar, G. Atia, and M. Guirguis. Toward a protected cloud against side

channel attacks: A game-theoretic framework. In 2018 56th Annual Allerton

Conference on Communication, Control, and Computing (Allerton), pages 78–

83. IEEE, 2018.

N. Baimukan and Q. Zhu. Concealment charm (ConcealGAN): Automatic

generation of steganographic text using generative models to bypass censorship.

Game Theory and Machine Learning for Cyber Security, pages 357–365, 2021.

A. Bakhtin, N. Brown, E. Dinan, G. Farina, C. Flaherty, D. Fried, A. Goff,

J. Gray, H. Hu, et al. Human-level play in the game of diplomacy by combin-

ing language models with strategic reasoning. Science, 378(6624):1067–1074,

2022a.

A. Bakhtin, D. J. Wu, A. Lerer, J. Gray, A. P. Jacob, G. Farina, A. H.

Miller, and N. Brown. Mastering the game of no-press diplomacy via human-

207

regularized reinforcement learning and planning. arXiv preprint arXiv:2210.05492,

2022b.

M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to drive by

imitating the best and synthesizing the worst. arXiv preprint arXiv:1812.03079,

2018.

N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song,

E. Parisotto, V. Dumoulin, S. Moitra, E. Hughes, et al. The hanabi challenge:

A new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

S. Barrett, A. Rosenfeld, S. Kraus, and P. Stone. Making friends on the

fly: Cooperating with new teammates. Artificial Intelligence, October 2016.

doi: 10.1016/j.artint.2016.10.005. URL http://www.sciencedirect.com/

science/article/pii/S0004370216301266.

D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of

decentralized control of markov decision processes. Mathematics of operations

research, 27(4):819–840, 2002.

D. Bezzina, M. L. Buonarosa, et al. Ccat ann arbor connected environment

(aace) operations and maintenance. Technical report, University of Michigan.

Center for Connected and Automated Transportation, 2023.

V. Bier, S. Oliveros, and L. Samuelson. Choosing what to protect: Strategic

defensive allocation against an unknown attacker. Journal of Public Economic

Theory, 9(4):563–587, 2007.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM

SIGARCH computer architecture news, 39(2):1–7, 2011.

208

http://www.sciencedirect.com/science/article/pii/S0004370216301266
http://www.sciencedirect.com/science/article/pii/S0004370216301266

N. Brandizzi, D. Grossi, and L. Iocchi. Rlupus: Cooperation through emergent

communication in the werewolf social deduction game. Intelligenza Artificiale,

15(2):55–70, 2022.

S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth. RELOAD+ RE-

FRESH: Abusing cache replacement policies to perform stealthy cache attacks.

In 29th USENIX Security Symposium (USENIX Security 20), pages 1967–1984,

2020.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,

and W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016a.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,

and W. Zaremba. Openai gym, 2016b.

G. W. Brown. Iterative solution of games by fictitious play. Act. Anal. Prod

Allocation, 13(1):374, 1951.

J. Bucek, K.-D. Lange, and J. v. Kistowski. Spec cpu2017: Next-generation

compute benchmark. In Companion of the 2018 ACM/SPEC International

Conference on Performance Engineering, pages 41–42, 2018.

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,

Y. Pan, G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for

autonomous driving. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 11621–11631, 2020.

R. Charakorn, P. Manoonpong, and N. Dilokthanakul. Generating diverse

cooperative agents by learning incompatible policies. In The Eleventh In-

ternational Conference on Learning Representations, 2023. URL https://

openreview.net/forum?id=UkU05GOH7_6.

D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. In

Conference on Robot Learning, pages 66–75. PMLR, 2020.

209

https://openreview.net/forum?id=UkU05GOH7_6
https://openreview.net/forum?id=UkU05GOH7_6

D. Chen, V. Koltun, and P. Krähenbühl. Learning to drive from a world on

rails. In arXiv preprint arXiv:2105.00636, 2021.

J. Chen and G. Venkataramani. Cc-hunter: Uncovering covert timing channels

on shared processor hardware. In 2014 47th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 216–228. IEEE, 2014.

Q. Chen, S. Tang, Q. Yang, and S. Fu. Cooper: Cooperative perception for

connected autonomous vehicles based on 3d point clouds. In 2019 IEEE 39th

International Conference on Distributed Computing Systems (ICDCS), pages

514–524. IEEE, 2019.

F. Christianos, L. Schäfer, and S. V. Albrecht. Shared experience actor-critic

for multi-agent reinforcement learning. In Advances in Neural Information

Processing Systems (NeurIPS), 2020.

F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end

driving via conditional imitation learning. In 2018 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 4693–4700. IEEE, 2018.

F. Codevilla, E. Santana, A. M. López, and A. Gaidon. Exploring the limita-

tions of behavior cloning for autonomous driving. In Proceedings of the IEEE

International Conference on Computer Vision, pages 9329–9338, 2019.

B. Cui, A. Lupu, S. Sokota, H. Hu, D. J. Wu, and J. N. Foerster. Adversarial

diversity in hanabi. In The Eleventh International Conference on Learning

Representations, 2023a.

C. Cui, Y. Ma, X. Cao, W. Ye, and Z. Wang. Receive, reason, and react: Drive

as you say with large language models in autonomous vehicles. arXiv preprint

arXiv:2310.08034, 2023b.

210

J. Cui, H. Qiu, D. Chen, P. Stone, and Y. Zhu. Coopernaut: end-to-end

driving with cooperative perception for networked vehicles. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

17252–17262, 2022.

J. Cui, X. Yang, M. Luo, G. Lee, P. Stone, H.-H. S. Lee, B. Lee, G. E.

Suh, W. Xiong, and Y. Tian. MACTA: A multi-agent reinforcement learn-

ing approach for cache timing attacks and detection. In The Eleventh In-

ternational Conference on Learning Representations, 2023c. URL https:

//openreview.net/forum?id=CDlHZ78-Xzi.

X. Ding, J. Han, H. Xu, W. Zhang, and X. Li. HiLM-D: Towards high-

resolution understanding in multimodal large language models for autonomous

driving. arXiv preprint arXiv:2309.05186, 2023.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An

open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.

A. Downs. Stuck in traffic: Coping with peak-hour traffic congestion. Brook-

ings Institution Press, 2000.

K. Dresner. AIM: autonomous intersection management., 01 2008.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel.

RL2: Fast reinforcement learning via slow reinforcement learning, 2016.

I. Durugkar, E. Liebman, and P. Stone. Balancing individual preferences and

shared objectives in multiagent reinforcement learning. In Proceedings of the

29th International Joint Conference on Artificial Intelligence (IJCAI 2020),

July 2020.

T. Eghtesad, Y. Vorobeychik, and A. Laszka. Adversarial deep reinforcement

learning based adaptive moving target defense. In International Conference on

Decision and Game Theory for Security, pages 58–79. Springer, 2020.

211

https://openreview.net/forum?id=CDlHZ78-Xzi
https://openreview.net/forum?id=CDlHZ78-Xzi

Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strat-

egy for progressive image sampling. IEEE Transactions on Image Processing,

6(9):1305–1315, 1997.

R. Elderman, L. J. Pater, A. S. Thie, M. M. Drugan, and M. A. Wiering.

Adversarial reinforcement learning in a cyber security simulation. In ICAART

(2), pages 559–566, 2017.

S. Fan, S. M. Zahedi, and B. C. Lee. Distributed strategies for computational

sprints. Communications of the ACM, 62(2):98–106, 2019.

L. Gallo and J. Harri. Short paper: A lte-direct broadcast mechanism for peri-

odic vehicular safety communications. In IEEE Vehicular Networking Confer-

ence 2013, pages 166–169. IEEE, Dec 2013. doi: 10.1109/VNC.2013.6737604.

X. Gao, Y. Wu, R. Wang, C. Liu, Y. Zhou, and Z. Tu. LangCoop: Collaborative

driving with language. arXiv preprint arXiv:2504.13406, 2025.

P. Gu, M. Zhao, J. Hao, and B. An. Online ad hoc teamwork under partial

observability. In International Conference on Learning Representations, 2021.

Y. Guo, X. Xin, Y. Zhang, and J. Yang. Leaky way: a conflict-based cache

covert channel bypassing set associativity. In 2022 IEEE International Sympo-

sium on Microarchitecture (MICRO), pages 1458–1473. IEEE, 2022a.

Y. Guo, A. Zigerelli, Y. Zhang, and J. Yang. Adversarial prefetch: New cross-

core cache side channel attacks. In 2022 IEEE Symposium on Security and

Privacy (SP), pages 1458–1473. IEEE, 2022b.

A. Harris, S. Wei, P. Sahu, P. Kumar, T. Austin, and M. Tiwari. Cyclone:

Detecting contention-based cache information leaks through cyclic interference.

In Proceedings of the 52nd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 57–72, 2019.

212

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2):100–107, 1968.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual

networks. In European conference on computer vision, pages 630–645. Springer,

2016a.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016b.

J. Heinrich and D. Silver. Deep reinforcement learning from self-play in

imperfect-information games. arXiv preprint arXiv:1603.01121, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

S. Hu, Z. Fang, Z. Fang, X. Chen, and Y. Fang. AgentsCoDriver: Large

language model empowered collaborative driving with lifelong learning. arXiv

preprint arXiv:2404.06345, 2024.

iSmartWays Technology Inc. ismartways performance measurement, 2018.

URL https://fccid.io/2AQQ3IM2RSE/Test-Report/FCC-Part22-4039626.

K. Jang, E. Vinitsky, B. Chalaki, B. Remer, L. Beaver, A. A. Malikopoulos, and

A. Bayen. Simulation to scaled city: zero-shot policy transfer for traffic control

via autonomous vehicles. In Proceedings of the 10th ACM/IEEE International

Conference on Cyber-Physical Systems, pages 291–300, 2019.

Y. Jin, X. Shen, H. Peng, X. Liu, J. Qin, J. Li, J. Xie, P. Gao, G. Zhou,

and J. Gong. Surrealdriver: Designing generative driver agent simulation

framework in urban contexts based on large language model. arXiv preprint

arXiv:2309.13193, 2023.

213

https://fccid.io/2AQQ3IM2RSE/Test-Report/FCC-Part22-4039626

B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida. Kasper:

Scanning for generalized transient execution gadgets in the linux kernel. In

NDSS Symposium 2022, 2022.

J. B. Kenney. Dedicated short-range communications (dsrc) standards in the

united states. Proceedings of the IEEE, 99(7):1162–1182, July 2011. ISSN

0018-9219. doi: 10.1109/JPROC.2011.2132790.

N. Kheterpal, K. Parvate, C. Wu, A. Kreidieh, E. Vinitsky, and A. Bayen. Flow:

Deep reinforcement learning for control in sumo. EPiC Series in Engineering,

2:134–151, 2018.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,

M. Lipp, S. Mangard, T. Prescher, et al. Spectre attacks: Exploiting specula-

tive execution. In 2019 IEEE Symposium on Security and Privacy (SP), pages

1–19. IEEE, 2019.

D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker. Recent development

and applications of sumo-simulation of urban mobility. International journal

on advances in systems and measurements, 5(3&4), 2012.

A. R. Kreidieh, C. Wu, and A. M. Bayen. Dissipating stop-and-go waves

in closed and open networks via deep reinforcement learning. In 2018 21st

International Conference on Intelligent Transportation Systems (ITSC), pages

1475–1480. IEEE, 2018.

V. Krishnamurthy, M. Maskery, and M. H. Ngo. Game theoretic activation

and transmission scheduling in unattended ground sensor networks: A corre-

lated equilibrium approach. Wireless Sensor Networks: Signal Processing and

Communications Perspectives, pages 349–388, 2007.

214

M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat, D. Sil-

ver, and T. Graepel. A unified game-theoretic approach to multiagent rein-

forcement learning. Advances in neural information processing systems, 30,

2017.

A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Pointpillars:

Fast encoders for object detection from point clouds. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

12697–12705, 2019.

J. Laufer. Freeway capacity, saturation flow and the car following behavioural

algorithm of the vissim microsimulation software. In 30th Australasian Trans-

port Research Forum, volume 25, 2007.

A. Lazaridou, A. Potapenko, and O. Tieleman. Multi-agent communication

meets natural language: Synergies between functional and structural language

learning. arXiv preprint arXiv:2005.07064, 2020.

M. Lewis, D. Yarats, Y. N. Dauphin, D. Parikh, and D. Batra. Deal or no deal?

end-to-end learning for negotiation dialogues. arXiv preprint arXiv:1706.05125,

2017.

Q. Li, Y. Wang, Y. Wang, and H. Zhao. Hdmapnet: A local semantic map

learning and evaluation framework, 2021a.

Y. Li, S. Ren, P. Wu, S. Chen, C. Feng, and W. Zhang. Learning distilled

collaboration graph for multi-agent perception. In Thirty-fifth Conference on

Neural Information Processing Systems (NeurIPS 2021), 2021b.

N. Lichtlé, E. Vinitsky, M. Nice, R. Bhadani, M. Bunting, F. Wu, B. Piccoli,

B. Seibold, D. B. Work, J. W. Lee, et al. From sim to real: A pipeline for

training and deploying traffic smoothing cruise controllers. IEEE Transactions

on Robotics, 2024.

215

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,

S. Mangard, P. Kocher, D. Genkin, et al. Meltdown: Reading kernel memory

from user space. In 27th USENIX Security Symposium (USENIX Security 18),

pages 973–990, 2018.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel

attacks are practical. In 2015 IEEE symposium on security and privacy, pages

605–622. IEEE, 2015.

M. Luo, W. Xiong, G. Lee, Y. Li, X. Yang, A. Zhang, Y. Tian, H. H. S. Lee,

and G. E. Suh. AutoCAT: Reinforcement learning for automated exploration

of cache-timing attacks. In 29th Sympisum on High Performance Computer

Architecture (HPCA), 2023.

A. Lupu, B. Cui, H. Hu, and J. Foerster. Trajectory diversity for zero-shot

coordination. In International conference on machine learning, pages 7204–

7213. PMLR, 2021.

Y. Ma, Y. Cao, J. Sun, M. Pavone, and C. Xiao. Dolphins: Multimodal

language model for driving, 2023.

A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson. Maven: Multi-agent

variational exploration. Advances in Neural Information Processing Systems,

32, 2019.

J. Mao, M. Niu, C. Jiang, H. Liang, J. Chen, X. Liang, Y. Li, C. Ye, W. Zhang,

Z. Li, et al. One million scenes for autonomous driving: Once dataset. arXiv

preprint arXiv:2106.11037, 2021.

J. Mao, Y. Qian, H. Zhao, and Y. Wang. Gpt-driver: Learning to drive with

gpt. arXiv preprint arXiv:2310.01415, 2023a.

J. Mao, J. Ye, Y. Qian, M. Pavone, and Y. Wang. A language agent for

autonomous driving, 2023b.

216

H. B. McMahan, G. J. Gordon, and A. Blum. Planning in the presence of cost

functions controlled by an adversary. In Proceedings of the 20th International

Conference on Machine Learning (ICML-03), pages 536–543, 2003.

J. Meinilä, P. Kyösti, T. Jämsä, and L. Hentilä. Winner ii channel models,

2009.

S. Mirbagher-Ajorpaz, G. Pokam, E. Mohammadian-Koruyeh, E. Garza, N. Abu-

Ghazaleh, and D. A. Jiménez. Perspectron: Detecting invariant footprints of

microarchitectural attacks with perceptron. In 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 1124–1137. IEEE,

2020.

S. Mirbagher-Ajorpaz, D. Moghimi, J. N. Collins, G. Pokam, N. Abu-Ghazaleh,

and D. Tullsen. EVAX: Towards a practical, pro-active & adaptive architec-

ture for high performance & security. In 2022 55th IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 1218–1236. IEEE, 2022.

R. Mirsky, I. Carlucho, A. Rahman, E. Fosong, W. Macke, M. Sridharan,

P. Stone, and S. V. Albrecht. A survey of ad hoc teamwork research. In

European Conference on Multi-Agent Systems, pages 275–293. Springer, 2022.

J.-B. Mouret and J. Clune. Illuminating search spaces by mapping elites.

arXiv preprint arXiv:1504.04909, 2015.

W. G. Najm, R. Ranganathan, G. Srinivasan, J. D. Smith, S. Toma, E. Swanson,

A. Burgett, et al. Description of light-vehicle pre-crash scenarios for safety

applications based on vehicle-to-vehicle communications. Technical report,

United States. National Highway Traffic Safety Administration, 2013.

National Academy of Engineering. 14 grand challenges for engineering of

the 21st century., 2007. URL http://www.engineeringchallenges.org/

challenges/cyberspace.aspx.

217

http://www.engineeringchallenges.org/challenges/cyberspace.aspx
http://www.engineeringchallenges.org/challenges/cyberspace.aspx

M. Nie, R. Peng, C. Wang, X. Cai, J. Han, H. Xu, and L. Zhang. Rea-

son2Drive: Towards interpretable and chain-based reasoning for autonomous

driving. arXiv preprint arXiv:2312.03661, 2023.

O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer. SpecFuzz: Bringing

spectre-type vulnerabilities to the surface. In 29th USENIX Security Sympo-

sium (USENIX Security 20), pages 1481–1498, 2020.

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. The spy in

the sandbox: Practical cache attacks in javascript and their implications. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 1406–1418, 2015.

D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures:

the case of AES. In Cryptographers’ track at the RSA conference, pages 1–20.

Springer, 2006.

G. Papoudakis, F. Christianos, and S. Albrecht. Agent modelling under partial

observability for deep reinforcement learning. Advances in Neural Information

Processing Systems, 35, 2021.

E. Parisotto, F. Song, J. Rae, R. Pascanu, C. Gulcehre, S. Jayakumar, M. Jader-

berg, R. L. Kaufman, A. Clark, S. Noury, et al. Stabilizing transformers for

reinforcement learning. In International conference on machine learning, pages

7487–7498. PMLR, 2020.

J. Parker-Holder, A. Pacchiano, K. M. Choromanski, and S. J. Roberts. Effec-

tive diversity in population based reinforcement learning. Advances in Neural

Information Processing Systems, 33:18050–18062, 2020a.

J. Parker-Holder, A. Pacchiano, K. M. Choromanski, and S. J. Roberts. Effec-

tive diversity in population based reinforcement learning. Advances in Neural

Information Processing Systems, 33:18050–18062, 2020b.

218

A. Petrenko, Z. Huang, T. Kumar, G. S. Sukhatme, and V. Koltun. Sample

factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous

reinforcement learning. In Proceedings of the 37th International Conference on

Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119

of Proceedings of Machine Learning Research, pages 7652–7662. PMLR, 2020.

URL http://proceedings.mlr.press/v119/petrenko20a.html.

J. Plungis. Toyota’s v2v move shows industry still interested in cars talking to

each other, 2018. URL https://www.consumerreports.org/automotive-technology/

toyota-v2v-vehicle-to-vehicle-communications/.

D. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In

NeurPIS, 1988.

A. Prakash, K. Chitta, and A. Geiger. Multi-modal fusion transformer for end-

to-end autonomous driving. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2021.

J. K. Pugh, L. B. Soros, and K. O. Stanley. Quality diversity: A new frontier

for evolutionary computation. Frontiers in Robotics and AI, page 40, 2016.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets

for 3d classification and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660, 2017a.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature

learning on point sets in a metric space. arXiv preprint arXiv:1706.02413,

2017b.

Z. Qi, Q. Feng, Y. Cheng, M. Yan, P. Li, H. Yin, and T. Wei. SpecTaint:

Speculative taint analysis for discovering spectre gadgets. In NDSS, 2021.

219

http://proceedings.mlr.press/v119/petrenko20a.html
https://www.consumerreports.org/automotive-technology/toyota-v2v-vehicle-to-vehicle-communications/
https://www.consumerreports.org/automotive-technology/toyota-v2v-vehicle-to-vehicle-communications/

T. Qian, J. Chen, L. Zhuo, Y. Jiao, and Y.-G. Jiang. NuScenes-QA: A multi-

modal visual question answering benchmark for autonomous driving scenario.

arXiv preprint arXiv:2305.14836, 2023.

H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan. Avr: Augmented

vehicular reality. In Proceedings of the 16th Annual International Conference

on Mobile Systems, Applications, and Services, pages 81–95, 2018.

H. Qiu, P. Huang, N. Asavisanu, X. Liu, K. Psounis, and R. Govindan. Au-

tocast: Scalable infrastructure-less cooperative perception for distributed col-

laborative driving. CoRR, abs/2112.14947, 2021. URL https://arxiv.org/

abs/2112.14947.

Qualcomm. Lte direct proximity services, 2019. URL https://www.qualcomm.

com/invention/technologies/lte/direct.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

A. Rahman, N. Höpner, F. Christianos, and S. V. Albrecht. Towards open ad

hoc teamwork using graph-based policy learning. In International Conference

on Machine Learning, volume 139. PMLR, 2021.

A. Rahman, E. Fosong, I. Carlucho, and S. V. Albrecht. Generating team-

mates for training robust ad hoc teamwork agents via best-response diversity.

Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL

https://openreview.net/forum?id=l5BzfQhROl.

J. Ravichandran, W. T. Na, J. Lang, and M. Yan. Pacman: attacking arm

pointer authentication with speculative execution. In ISCA, pages 685–698,

2022.

220

https://arxiv.org/abs/2112.14947
https://arxiv.org/abs/2112.14947
https://www.qualcomm.com/invention/technologies/lte/direct
https://www.qualcomm.com/invention/technologies/lte/direct
https://openreview.net/forum?id=l5BzfQhROl

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and

structured prediction to no-regret online learning. In Proceedings of the four-

teenth international conference on artificial intelligence and statistics, pages

627–635. JMLR Workshop and Conference Proceedings, 2011a.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and

structured prediction to no-regret online learning. In Proceedings of the four-

teenth international conference on artificial intelligence and statistics, pages

627–635, 2011b.

T. Roughgarden. Algorithmic game theory. Communications of the ACM, 53

(7):78–86, 2010.

G. Saileshwar, C. W. Fletcher, and M. Qureshi. Streamline: a fast, flushless

cache covert-channel attack by enabling asynchronous collusion. In Proceed-

ings of the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 1077–1090, 2021.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version

of bert: smaller, faster, cheaper and lighter. In NeurIPS EMC2 Workshop,

2019.

A. Sauer, N. Savinov, and A. Geiger. Conditional affordance learning for

driving in urban environments. In Conference on Robot Learning, pages 237–

252. PMLR, 2018.

A. Schlenker, H. Xu, M. Guirguis, C. Kiekintveld, A. Sinha, M. Tambe, S. Sonya,

D. Balderas, and N. Dunstatter. Don’t bury your head in warnings: A game-

theoretic approach for intelligent allocation of cyber-security alerts, 2017.

A. Schlenker et al. Deceiving cyber adversaries: A game theoretic approach.

In International Conference on Autonomous Agents and Multi Agent Systems,

2018.

221

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal

policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http:

//arxiv.org/abs/1707.06347.

H. Sha, Y. Mu, Y. Jiang, L. Chen, C. Xu, P. Luo, S. E. Li, M. Tomizuka,

W. Zhan, and M. Ding. Languagempc: Large language models as decision

makers for autonomous driving. arXiv preprint arXiv:2310.03026, 2023.

H. Shao, Y. Hu, L. Wang, S. L. Waslander, Y. Liu, and H. Li. LMDrive:

Closed-loop end-to-end driving with large language models. arXiv preprint

arXiv:2312.07488, 2023.

S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li. Pv-rcnn:

Point-voxel feature set abstraction for 3d object detection. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

10529–10538, 2020.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mas-

tering the game of Go with deep neural networks and tree search. nature, 529

(7587):484–489, 2016.

C. Sima, K. Renz, K. Chitta, L. Chen, H. Zhang, C. Xie, P. Luo, A. Geiger,

and H. Li. DriveLM: Driving with graph visual question answering. arXiv

preprint arXiv:2312.14150, 2023.

R. Stahlmann, A. Festag, A. Tomatis, I. Radusch, and F. Fischer. Starting

european field tests for car-2-x communication: the drive c2x framework. In

ITS World Congress and Exhibition, Oct 2011.

R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill,

N. Hamilton, H. Pohlmann, F. Wu, B. Piccoli, et al. Dissipation of stop-and-go

222

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

waves via control of autonomous vehicles: Field experiments. Transportation

Research Part C: Emerging Technologies, 89:205–221, 2018.

P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein. Ad hoc autonomous

agent teams: Collaboration without pre-coordination. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 24, pages 1504–1509, 2010.

D. Strouse, K. McKee, M. Botvinick, E. Hughes, and R. Everett. Collaborating

with humans without human data. Advances in neural information processing

systems, 34:14502–14515, 2021.

Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari,

S.-i. Tadaki, and S. Yukawa. Traffic jams without bottlenecks—experimental

evidence for the physical mechanism of the formation of a jam. New journal of

physics, 10(3):033001, 2008.

P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,

Y. Zhou, Y. Chai, B. Caine, et al. Scalability in perception for autonomous

driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 2446–2454, 2020.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT

press, 2018.

M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learn-

ing, pages 330–337, 1993.

M. E. Taylor and P. Stone. Transfer learning for reinforcement learning do-

mains: A survey. Journal of Machine Learning Research, 10(7), 2009.

O. Thakoor, P. Vayanos, M. Tambe, and M. Yu. Game theory for strategic

DDoS mitigation, 2020.

223

C. Thompson. 18 awesome innovations in the new mercedes e-class, 2016. URL

https://www.businessinsider.com/mercedes-e-class-2017-features-2016-6.

M. Toromanoff, E. Wirbel, and F. Moutarde. End-to-end model-free reinforce-

ment learning for urban driving using implicit affordances. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

June 2020.

M. Treiber and A. Kesting. The intelligent driver model with stochasticity-

new insights into traffic flow oscillations. Transportation research procedia, 23:

174–187, 2017.

M. Treiber, A. Hennecke, and D. Helbing. Congested traffic states in empirical

observations and microscopic simulations. Physical review E, 62(2):1805, 2000.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017.

P. Vila, P. Ganty, M. Guarnieri, and B. Köpf. CacheQuery: Learning re-

placement policies from hardware caches. In Proceedings of the 41st ACM

SIGPLAN Conference on Programming Language Design and Implementation,

pages 519–532, 2020.

E. Vinitsky, A. Kreidieh, L. Le Flem, N. Kheterpal, K. Jang, C. Wu, F. Wu,

R. Liaw, E. Liang, and A. M. Bayen. Benchmarks for reinforcement learning

in mixed-autonomy traffic. In Conference on Robot Learning, pages 399–409,

2018.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,

D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in

starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–

354, 2019.

224

https://www.businessinsider.com/mercedes-e-class-2017-features-2016-6

C. Wang, A. Rahman, J. Cui, Y. Sung, and P. Stone. ROTATE: Regret-driven

open-ended training for ad hoc teamwork. arXiv preprint arXiv:2505.23686,

2025.

T.-H. Wang, S. Manivasagam, M. Liang, Y. Bin, W. Zeng, J. Tu, and R. Ur-

tasun. V2VNet: Vehicle-to-vehicle communication for joint perception and

prediction. In ECCV, 2020.

X. Wang, S. Zhang, W. Zhang, W. Dong, J. Chen, Y. Wen, and W. Zhang.

Zsc-eval: An evaluation toolkit and benchmark for multi-agent zero-shot coor-

dination. Advances in Neural Information Processing Systems, 37:47344–47377,

2024.

Y. Wang, Z. R. Shi, L. Yu, Y. Wu, R. Singh, L. Joppa, and F. Fang. Deep

reinforcement learning for green security games with real-time information. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

1401–1408, 2019.

Wayve. LINGO-1: Exploring natural language for autonomous driving, 2023.

URL https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou,

et al. Chain-of-thought prompting elicits reasoning in large language models.

Advances in neural information processing systems, 35:24824–24837, 2022.

M. P. Wellman. Methods for empirical game-theoretic analysis. In AAAI,

volume 980, pages 1552–1556, 2006.

M. P. Wellman, K. Tuyls, and A. Greenwald. Empirical game theoretic analysis:

A survey. Journal of Artificial Intelligence Research, 82:1017–1076, 2025.

L. Wen, D. Fu, X. Li, X. Cai, T. Ma, P. Cai, M. Dou, B. Shi, L. He, and

Y. Qiao. Dilu: A knowledge-driven approach to autonomous driving with large

language models. arXiv preprint arXiv:2309.16292, 2023a.

225

https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/

L. Wen, X. Yang, D. Fu, X. Wang, P. Cai, X. Li, T. Ma, Y. Li, L. Xu, D. Shang,

et al. On the road with gpt-4v (ision): Early explorations of visual-language

model on autonomous driving. arXiv preprint arXiv:2311.05332, 2023b.

C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen. Flow: Archi-

tecture and benchmarking for reinforcement learning in traffic control. arXiv

preprint arXiv:1710.05465, page 10, 2017.

C. Wu, A. M. Bayen, and A. Mehta. Stabilizing traffic with autonomous

vehicles. In 2018 IEEE International Conference on Robotics and Automation

(ICRA), pages 6012–6018, 2018.

S. Wu, J. Yao, H. Fu, Y. Tian, C. Qian, Y. Yang, Q. FU, and Y. Wei. Quality-

similar diversity via population based reinforcement learning. In The Eleventh

International Conference on Learning Representations, 2023. URL https:

//openreview.net/forum?id=bLmSMXbqXr.

D. Xing, Q. Liu, Q. Zheng, G. Pan, and Z. Zhou. Learning with generated

teammates to achieve type-free ad-hoc teamwork. In IJCAI, pages 472–478,

2021.

W. Xiong and J. Szefer. Leaking information through cache LRU states. In

2020 IEEE International Symposium on High Performance Computer Architec-

ture (HPCA), pages 139–152. IEEE, 2020.

R. Xu, H. Xiang, X. Xia, X. Han, J. Liu, and J. Ma. OPV2V: An open bench-

mark dataset and fusion pipeline for perception with vehicle-to-vehicle commu-

nication. In 2022 IEEE International Conference on Robotics and Automation

(ICRA), 2022.

Y. Xu, S. Wang, P. Li, F. Luo, X. Wang, W. Liu, and Y. Liu. Exploring large

language models for communication games: An empirical study on werewolf.

arXiv preprint arXiv:2309.04658, 2023a.

226

https://openreview.net/forum?id=bLmSMXbqXr
https://openreview.net/forum?id=bLmSMXbqXr

Z. Xu, Y. Zhang, E. Xie, Z. Zhao, Y. Guo, K. K. Wong, Z. Li, and H. Zhao.

Drivegpt4: Interpretable end-to-end autonomous driving via large language

model. arXiv preprint arXiv:2310.01412, 2023b.

M. Yan, Y. Shalabi, and J. Torrellas. ReplayConfusion: detecting cache-

based covert channel attacks using record and replay. In 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

1–14. IEEE, 2016.

B. Yang, M. Liang, and R. Urtasun. Hdnet: Exploiting hd maps for 3d object

detection. In Conference on Robot Learning, pages 146–155. PMLR, 2018.

S. Yang, J. Liu, R. Zhang, M. Pan, Z. Guo, X. Li, Z. Chen, P. Gao, Y. Guo,

and S. Zhang. Lidar-llm: Exploring the potential of large language models for

3d lidar understanding. arXiv preprint arXiv:2312.14074, 2023.

X. Yang, B. Cui, T. Li, and Y. Tian. RLMeta: A flexible framework for dis-

tributed reinforcement learning, 1 2022. URL https://github.com/facebookresearch/

rlmeta.

Y. Yarom and K. Falkner. FLUSH+ RELOAD: A high resolution, low noise,

l3 cache side-channel attack. In 23rd USENIX security symposium (USENIX

security 14), pages 719–732, 2014.

D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang, X. Wu, Q. Guo,

et al. Mastering complex control in moba games with deep reinforcement

learning. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 34, pages 6672–6679, 2020.

C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The sur-

prising effectiveness of PPO in cooperative multi-agent games. In Thirty-sixth

Conference on Neural Information Processing Systems Datasets and Bench-

marks Track, 2022. URL https://openreview.net/forum?id=YVXaxB6L2Pl.

227

https://github.com/facebookresearch/rlmeta
https://github.com/facebookresearch/rlmeta
https://openreview.net/forum?id=YVXaxB6L2Pl

J. Yu, T. Chen, C. Gutterman, S. Zhu, G. Zussman, I. Seskar, and D. Kilper.

Cosmos: Optical architecture and prototyping. In 2019 Optical Fiber Commu-

nications Conference and Exhibition (OFC), pages 1–3. IEEE, 2019.

X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. E. Guo, F. Qian, and Z. M. Mao.

Emp: Edge-assisted multi-vehicle perception. In Proceedings of the 27th An-

nual International Conference on Mobile Computing and Networking, Mobi-

Com ’21, page 545–558, New York, NY, USA, 2021. Association for Comput-

ing Machinery. ISBN 9781450383424. doi: 10.1145/3447993.3483242. URL

https://doi.org/10.1145/3447993.3483242.

H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun. Point transformer. In

Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 16259–16268, October 2021.

Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based

3d object detection. 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 4490–4499, 2018.

L. Zintgraf, S. Devlin, K. Ciosek, S. Whiteson, and K. Hofmann. Deep in-

teractive bayesian reinforcement learning via meta-learning. arXiv preprint

arXiv:2101.03864, 2021.

B.-E. Zolbayar, R. Sheatsley, P. McDaniel, and M. Weisman. Evading machine

learning based network intrusion detection systems with GANs. Game Theory

and Machine Learning for Cyber Security, pages 335–356, 2021.

228

https://doi.org/10.1145/3447993.3483242

	List of Tables
	List of Figures
	Part I Background
	Chapter 1: Introduction
	Contributions
	Reading Guide to the Dissertation

	Chapter 2: Background and Notation
	Markov Decision Process
	Partially Observable Stochastic Games
	Agent Populations
	Learning Objectives

	Part II Learning to Communicate
	Chapter 3: Learning to Communicate in Latent Representations
	Coopernaut
	Background: Point Transformers
	Coopernaut
	Policy Learning: Imitation Learning
	Implementation Details

	Environment: AutoCastSim
	Scenarios
	V2V Communication
	Oracle Expert

	Experiments
	Experimental Settings
	Baselines
	Quantitative Results

	Related Work
	Summary, Limitations, and Future Work

	Chapter 4: Learning to Communicate in Natural Language
	Problem Definition
	Method: LLM+Debrief
	Agent Policy
	Agent Learning: Post-Episode Debriefing

	Environment: TalkingVehiclesGym
	Experiments
	Quantitative Results
	Qualitative Analysis
	Cross-Scenario Generalization and Distillation towards Real-Time

	Related Work
	Summary, Limitations, and Future Work

	Part III Learning to Generalize
	Chapter 5: Generalizing to Adversarial Opponents
	Problem Statement: Cache Timing Attacks
	Domain Description
	Problem Statement

	Environment: MA-AutoCAT
	Method: MACTA
	Experiments
	Evaluation Setup and Metrics
	Benign Dataset
	Results
	Ablation Study on Neural Architecture

	Related Work
	Summary, Limitations, and Future Work

	Chapter 6: Generalizing to Cooperative Teammates
	The Ad Hoc Teamwork Problem
	Minimum Coverage Sets
	L-BRDiv: Generating Teammate Policies By Approximating Minimum Coverage Sets
	Jointly Approximating MCS(E) and Generating Training Partners
	Lagrangian BRDiv (L-BRDiv)

	Experiments
	Environments
	Baseline Methods
	Experiment Setup
	Ad Hoc Teamwork Experiment Results
	Behaviour Analysis

	Related Work
	Summary, Limitations, and Future Work

	Part IV Learning with Human Proxies
	Chapter 7: Collaborating with Human Proxies
	Problem Formulation
	Methodology
	Evaluation Metrics
	Centralized Multiagent Driving Policy
	Modular Transfer Learning Approach
	Distributed Multiagent Driving Policy

	Experiment Setup
	Traffic Scenario 1 - The Simple Merge
	Traffic Scenario 2 - The I-696 Merge
	Human-Proxy Vehicles
	Autonomous Vehicles (AV)
	Training Details

	Empirical Results
	Comparison of Reward Functions
	Modular Transfer Learning
	Distributed Setting

	Related Work
	Summary, Limitations, and Future Work

	Part V Related and Future Work
	Chapter 8: Related Work
	Multi-Agent Policy Generalization
	Empirical Game Theory Analysis
	Ad Hoc Teamwork

	Multi-Agent Communication
	Vehicle-to-Vehicle Communication
	Learning to Communicate in Natural Language

	Multi-Agent Policy Learning with Mixed Autonomy
	Application Domains
	The Cache Timing Attack Problem
	LLM Agents for Autonomous Driving

	Chapter 9: Future Work
	Towards Super-Human Pokémon AI
	Open-Ended Training for Ad Hoc Teamwork
	General-Sum N-Agent L-BRDiv
	Ad Hoc Teamwork Benchmark
	Natural Language Communication and Collaboration for Embodied Agents
	Multi-Agent Strategic Reasoning for Large Language Models
	Multi-Agent Collaboration Safety

	Chapter 10: Conclusion
	Contributions
	Broader Impact

	Appendix
	Appendix A: Additional Details on LLM+Debrief
	Method
	Implementation Details
	Inference Latencies

	Environment
	Example Agent Prompting Flow
	Example Learned Knowledge and Cooperative Strategies
	Overtake (Perception)
	Red Light (Perception)
	Left Turn (Perception)
	Overtake (Negotiation)
	Highway Merge (Negotiation)
	Highway Exit (Negotiation)
	Highway Merge (Negotiation) Silent Reflection
	Overtake (Perception) Communication Protocol by LLM+Debrief, seed 12, checkpoint-28

	Appendix B: Additional Details on MACTA
	Why Study Cache Timing Attacks
	Environment Configurations
	Benign Dataset
	Trajectory Analysis
	Real Hardware Analysis
	Model Architectures
	Algorithm and Training Hyper-parameters
	Heuristic Cache Timing Attacks and Detectors
	Heuristic Attacker Algorithms
	Detector Algorithms

	Appendix C: Additional Details on L-BRDiv
	Teammate Policies for AHT Evaluation
	Repeated Matrix Game
	Cooperative Reaching and Weighted Cooperative Reaching
	Level-based Foraging

	Analyzing Baseline Failure in Repeated Matrix Game & Weighted Cooperative Reaching
	Repeated Matrix Game
	Weighted Cooperative Reaching

	Analyzing the Lagrange Multipliers of L-BRDiv
	AHT Experiment Hyperparameters

	Appendix D: Additional Details on Traffic Congestion Reduction

	References

